When dealing with regular, simple Pareto fronts (PFs), the decomposition-based multi-objective optimization algorithm (MOEA/D) performs well by presetting a set of uniformly distributed weight vectors. However, its performance declines when faced with complex and irregular PFs. Many algorithms address this problem by periodically adjusting the distribution of the weight vectors, but these methods do not take into account the performance of the population and are likely to update the weight vectors at the wrong time. In addition, for the SBX crossover operator, the setting of its distribution index will largely affect the exploration and convergence ability of the algorithm, so a single parameter setting will have negative impacts. To tackle these challenges, this paper proposes a method to simultaneously adaptively update weight vectors and optimize SBX parameter via Q-learning(RL-MaOEA/D). In order to make the strategies made by Q-learning more accurate, Two different metrics (CD and NCD) are proposed that capture diversity and convergence of individual and population respectively. RL-MaOEA/D is compared with seven state-of-the-art algorithms on different problems, and the simulation results reflect that the proposed algorithm has better performance.
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510000, Guangdong, Peoples R China
Sun Yat Sen Univ, Collaborat Innovat Ctr High Performance Comp, Guangzhou 510000, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510000, Guangdong, Peoples R China
He, Xiaoyu
Zhou, Yuren
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510000, Guangdong, Peoples R China
Sun Yat Sen Univ, Collaborat Innovat Ctr High Performance Comp, Guangzhou 510000, Guangdong, Peoples R China
City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510000, Guangdong, Peoples R China
Zhou, Yuren
Chen, Zefeng
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510000, Guangdong, Peoples R China
Sun Yat Sen Univ, Collaborat Innovat Ctr High Performance Comp, Guangzhou 510000, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510000, Guangdong, Peoples R China
Chen, Zefeng
Zhang, Qingfu
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510000, Guangdong, Peoples R China
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
Jiangsu Key Lab Numer Simulat Large Scale Complex, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
Sun, Yuehong
Xiao, Kelian
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
Xiao, Kelian
Wang, Siqiong
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
Wang, Siqiong
Lv, Qiuyue
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
机构:
China Univ Geosci, Sch Comp, Wuhan, Peoples R China
China Univ Geosci, Hubei Key Lab Intelligent Geoinformat Proc, Wuhan, Peoples R China
Univ Strathclyde, Dept Mech & Aerosp Engn, Glasgow, ScotlandChina Univ Geosci, Sch Comp, Wuhan, Peoples R China
Cao, Li
Wang, Maocai
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Sch Comp, Wuhan, Peoples R China
China Univ Geosci, Hubei Key Lab Intelligent Geoinformat Proc, Wuhan, Peoples R ChinaChina Univ Geosci, Sch Comp, Wuhan, Peoples R China
Wang, Maocai
Vasile, Massimiliano
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strathclyde, Dept Mech & Aerosp Engn, Glasgow, ScotlandChina Univ Geosci, Sch Comp, Wuhan, Peoples R China
Vasile, Massimiliano
Dai, Guangming
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Sch Comp, Wuhan, Peoples R China
China Univ Geosci, Hubei Key Lab Intelligent Geoinformat Proc, Wuhan, Peoples R ChinaChina Univ Geosci, Sch Comp, Wuhan, Peoples R China
Dai, Guangming
Wu, Huanqin
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Sch Comp, Wuhan, Peoples R China
China Univ Geosci, Hubei Key Lab Intelligent Geoinformat Proc, Wuhan, Peoples R ChinaChina Univ Geosci, Sch Comp, Wuhan, Peoples R China