A decomposition-based many-objective evolutionary algorithm with Q-learning guide weight vectors update

被引:0
|
作者
Zhang, HaiJian [1 ]
Dai, Yiru [1 ]
机构
[1] Tongji Univ, Coll Elect & Informat Engn, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
Many-objectives; MOEA/D; Q-learning; Weight adaption; Parameter optimization; NONDOMINATED SORTING APPROACH; OPTIMIZATION ALGORITHM; MOEA/D;
D O I
10.1016/j.eswa.2024.125607
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When dealing with regular, simple Pareto fronts (PFs), the decomposition-based multi-objective optimization algorithm (MOEA/D) performs well by presetting a set of uniformly distributed weight vectors. However, its performance declines when faced with complex and irregular PFs. Many algorithms address this problem by periodically adjusting the distribution of the weight vectors, but these methods do not take into account the performance of the population and are likely to update the weight vectors at the wrong time. In addition, for the SBX crossover operator, the setting of its distribution index will largely affect the exploration and convergence ability of the algorithm, so a single parameter setting will have negative impacts. To tackle these challenges, this paper proposes a method to simultaneously adaptively update weight vectors and optimize SBX parameter via Q-learning(RL-MaOEA/D). In order to make the strategies made by Q-learning more accurate, Two different metrics (CD and NCD) are proposed that capture diversity and convergence of individual and population respectively. RL-MaOEA/D is compared with seven state-of-the-art algorithms on different problems, and the simulation results reflect that the proposed algorithm has better performance.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] A Decomposition-Based Evolutionary Algorithm with Adaptive Weight Vectors for Multi- and Many-objective Optimization
    Peng, Guang
    Wolter, Katinka
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2020, 2020, 12104 : 149 - 164
  • [2] A Decomposition-Based Many-Objective Evolutionary Algorithm With Two Types of Adjustments for Direction Vectors
    Cai, Xinye
    Mei, Zhiwei
    Fan, Zhun
    IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (08) : 2335 - 2348
  • [3] A decomposition-based multi-objective evolutionary algorithm with Q-learning for adaptive operator selection
    Xue, Fei
    Chen, Yuezheng
    Wang, Peiwen
    Ye, Yunsen
    Dong, Jinda
    Dong, Tingting
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (14) : 21229 - 21283
  • [4] A decomposition-based many-objective evolutionary algorithm with adaptive weight vector strategy
    Chen, Xin
    Yin, Jiacheng
    Yu, Dongjin
    Fan, Xulin
    APPLIED SOFT COMPUTING, 2022, 128
  • [5] A decomposition-based many-objective evolutionary algorithm with weight grouping and adaptive adjustment
    Gao, Xiaoxin
    He, Fazhi
    Luo, Jinkun
    Si, Tongzhen
    MEMETIC COMPUTING, 2024, 16 (01) : 91 - 113
  • [6] An adaptive decomposition-based evolutionary algorithm for many-objective optimization
    Han, Dong
    Du, Wenli
    Du, Wei
    Jin, Yaochu
    Wu, Chunping
    INFORMATION SCIENCES, 2019, 491 : 204 - 222
  • [7] A Fuzzy Decomposition-Based Multi/Many-Objective Evolutionary Algorithm
    Liu, Songbai
    Lin, Qiuzhen
    Tan, Kay Chen
    Gong, Maoguo
    Coello, Carlos A. Coello
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (05) : 3495 - 3509
  • [8] A Decomposition-Based Evolutionary Algorithm with Correlative Selection Mechanism for Many-Objective Optimization
    Liu, Ruochen
    Wang, Ruinan
    Bian, Renyu
    Liu, Jing
    Jiao, Licheng
    EVOLUTIONARY COMPUTATION, 2021, 29 (02) : 269 - 304
  • [9] A decomposition-based many-objective evolutionary algorithm updating weights when required
    de Farias, Lucas R. C.
    Araujo, Aluizio F. R.
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 68
  • [10] A New Decomposition-Based Many-Objective Algorithm Based on Adaptive Reference Vectors and Fractional Dominance Relation
    Zhang, Xiaojun
    IEEE ACCESS, 2021, 9 : 152169 - 152181