Multi-Agent Reinforcement Learning for Multiple Rogue Drone Interception

被引:0
|
作者
Valianti, Panayiota [1 ]
Malialis, Kleanthis [1 ]
Kolios, Panayiotis [1 ]
Ellinas, Georgios [1 ]
机构
[1] University of Cyprus, Department of Electrical and Computer Engineering, The Kios Research and Innovation Center of Excellence (KIOS CoE), Nicosia,1678, Cyprus
来源
2023 International Conference on Unmanned Aircraft Systems, ICUAS 2023 | 2023年
基金
欧盟地平线“2020”;
关键词
Engineering Village;
D O I
暂无
中图分类号
学科分类号
摘要
Aerial vehicle - Centralised - Communications systems - Control actions - Interference power - Multi-agent reinforcement learning - Performance - Power levels - Public safety - Reinforcement learnings
引用
收藏
页码:1037 / 1044
相关论文
共 50 条
  • [31] Energy-Saving Multi-Agent Deep Reinforcement Learning Algorithm for Drone Routing Problem
    Shu, Xiulan
    Lin, Anping
    Wen, Xupeng
    SENSORS, 2024, 24 (20)
  • [32] Energy-Saving Multi-Agent Deep Reinforcement Learning Algorithm for Drone Routing Problem
    Shu, Xiulan
    Lin, Anping
    Wen, Xupeng
    Sensors, 24 (20):
  • [33] MAGNet: Multi-agent Graph Network for Deep Multi-agent Reinforcement Learning
    Malysheva, Aleksandra
    Kudenko, Daniel
    Shpilman, Aleksei
    2019 XVI INTERNATIONAL SYMPOSIUM PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS (REDUNDANCY), 2019, : 171 - 176
  • [34] Quantum Multi-Agent Reinforcement Learning Software Design and Visual Simulations for Multi-Drone Mobility Control
    Park, Soohyun
    Kim, Gyu Seon
    Jung, Sovi
    Kim, Joongheon
    2024 IEEE VTS ASIA PACIFIC WIRELESS COMMUNICATIONS SYMPOSIUM, APWCS 2024, 2024,
  • [35] TEAM POLICY LEARNING FOR MULTI-AGENT REINFORCEMENT LEARNING
    Cassano, Lucas
    Alghunaim, Sulaiman A.
    Sayed, Ali H.
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3062 - 3066
  • [36] Aggregation Transfer Learning for Multi-Agent Reinforcement learning
    Xu, Dongsheng
    Qiao, Peng
    Dou, Yong
    2021 2ND INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2021), 2021, : 547 - 551
  • [37] Learning to Communicate with Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Assael, Yannis M.
    de Freitas, Nando
    Whiteson, Shimon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [38] Consensus Learning for Cooperative Multi-Agent Reinforcement Learning
    Xu, Zhiwei
    Zhang, Bin
    Li, Dapeng
    Zhang, Zeren
    Zhou, Guangchong
    Chen, Hao
    Fan, Guoliang
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 10, 2023, : 11726 - 11734
  • [39] Concept Learning for Interpretable Multi-Agent Reinforcement Learning
    Zabounidis, Renos
    Campbell, Joseph
    Stepputtis, Simon
    Hughes, Dana
    Sycara, Katia
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 1828 - 1837
  • [40] Learning structured communication for multi-agent reinforcement learning
    Sheng, Junjie
    Wang, Xiangfeng
    Jin, Bo
    Yan, Junchi
    Li, Wenhao
    Chang, Tsung-Hui
    Wang, Jun
    Zha, Hongyuan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2022, 36 (02)