Influences of stiffness and damping parameters on control of active suspension based on LQG

被引:0
|
作者
Zhao, Caihong [1 ]
Chen, Shian [2 ]
Wang, Juncheng [2 ]
机构
[1] Department of Mechanical and Electrical Engineering, Nanhang Jincheng College, Nanjing
[2] School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang
来源
Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery | 2015年 / 46卷 / 12期
关键词
Active suspension; Automobile; Damping; LQG control; Stiffness;
D O I
10.6041/j.issn.1000-1298.2015.12.041
中图分类号
学科分类号
摘要
The objective of this research was to supply theoretical bases for design and optimization of stiffness and damping parameters of active suspension system based on LQG control. Taking linear and nonlinear half car models with 4-degrees of freedom (DOF) as research examples respectively, influences of the above two parameters on active suspension system were analyzed through theoretical derivation and numerical simulation. Theoretical derivation about the linear model showed that the Ricatti Equation's solution of the active suspension system based on LQG had nothing to do with stiffness and damping parameters. Result came as that the time domain response of the active suspension system had nothing to do with stiffness and damping parameters. Numerical simulation about the linear model revealed that each integral force made up with stiffness force, damping one and active control one were independent of the other and invariable when stiffness and damping parameters were changed, and the global damping characteristics of the active control obviously became negative from positive with its parallel damping parameter increasing. As for the nonlinear car model in general, three steps, including linearizing the control system, designing LQG controller for the linearized control system, and de-linearizing in control implement, were executed to achieve the LQG controller for the nonlinear active suspension system. The design process showed that the integral forces were not influenced by stiffness and damping parameters, because their force actions were counteracted in the above linearizing and de-linearizing steps. Thus, the above results about the linear active suspension system were also true when the active suspension system was with nonlinear stiffness and damping characteristics. © 2015, Chinese Society of Agricultural Machinery. All right reserved.
引用
收藏
页码:301 / 308and354
相关论文
共 19 条
  • [1] Aldair A.A., Wang W.J., A neurofuzzy controller for full vehicle active suspension systems, Journal of Vibration and Control, 18, 12, pp. 1837-1854, (2011)
  • [2] Simone F., Alireza K., A data-driven approach to mixed-sensitivity control with application to an active suspension system, IEEE Transactions on Industrial Informatics, 9, 4, pp. 2293-2300, (2013)
  • [3] Yang L., Chen W., Zhang R., Et al., Fault-tolerant control and experiment on vehicle semi-active suspension system based on control law reconfiguration, Transactions of the Chinese Society for Agricultural Machinery, 44, 10, pp. 1-9, (2013)
  • [4] Kong Y., Zhao D., Yang B., Et al., Non-fragile H<sub>∞</sub>/L<sub>2</sub>-L<sub>∞</sub> static output feedback control of active suspension with actuator input delay, Transactions of the Chinese Society for Agricultural Machinery, 45, 8, pp. 1-7, (2014)
  • [5] Chen S., Qiu F., He R., A method for choosing weights in a suspension LQG controller, Journal of Vibration and Shock, 27, 2, pp. 65-68, (2008)
  • [6] Chen S., He R., Liu H., Et al., An optimal design for suspension based on LQG control, International Conference on Electric Information and Control Engineering Proceedings, pp. 1987-1992, (2011)
  • [7] Chai L., Sun T., Feng J., Et al., Design of the LQG controller for active suspension system based on analytic hierarchy process, Automotive Engineering, 32, 8, pp. 712-718, (2010)
  • [8] Chen J., Feng W., Guo W., Et al., Whole vehicle magnet rorheologieal fluid damper semi-active suspension variable universe fuzzy control simulation and test, Transactions of the Chinese Society for Agricultural Machinery, 42, 5, pp. 8-13, (2011)
  • [9] Guo Q., Lei B., Research and optimization for semi-active suspension PID control, Foreign Electronic Measurement Technology, 34, 4, pp. 60-65, (2015)
  • [10] Michael B., Pablo R.R., Sliding mode controller design for linear systems with unmeasured states, Journal of the Franklin Institute, 349, 4, pp. 1337-1349, (2012)