Network parameter identification and estimation based on hybrid measurement of WAMS/SCADA

被引:0
|
作者
Zhejiang University, Hangzhou 310027, China [1 ]
不详 [2 ]
机构
来源
Dianli Xitong Zidonghue | 2008年 / 5卷 / 1-5期
关键词
Data acquisition - Electric lines - Electric potential - Identification (control systems) - Optimization - Parameter estimation - System stability - Units of measurement;
D O I
暂无
中图分类号
学科分类号
摘要
Conventional parameter identifying methods always encounter numerical instability, divergence and residual contamination. This paper proposes a new method to overcome these problems. First, the relative residual is worked out with measurement from the wide-area measurement system (WAMS) to preliminarily judge the existence of parameter error. Then the new method makes full use of the voltage and current phasors gathered by phasor measurement units (PMUs) to establish a direct relationship among the variables at both ends of the branch, with which, the branches with parameter errors can be identified and their parameters estimated with the optimization method as well. Simulation results on the IEEE 39-bus system show that all the parameters of transmission lines and transformers in a power grid can be monitored as long as half of the buses are equipped with PMU.
引用
收藏
相关论文
共 50 条
  • [41] A hybrid method for parameter estimation
    Alonso, H
    Magalhaes, H
    Mendonça, T
    Rocha, P
    2005 IEEE INTERNATIONAL WORKSHOP ON INTELLIGENT SIGNAL PROCESSING (WISP), 2005, : 304 - 309
  • [42] Parameter estimation of nonlinear system based on hybrid intelligent method
    Juang, JG
    Lin, BS
    Li, CK
    2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 3365 - 3370
  • [43] Battery Model Parameter Identification and SOC Estimation Considering Voltage Measurement Noise
    Jiang B.
    Dai H.
    Wei X.
    Xu T.
    Tongji Daxue Xuebao/Journal of Tongji University, 2018, 46 : 190 - 195
  • [44] Cognitive Intelligence in UAC Channel Parameter Identification, Measurement, Estimation, and Environment Mapping
    Ahmed, Sadia
    Arslan, Huseyin
    OCEANS 2009 - EUROPE, VOLS 1 AND 2, 2009, : 876 - +
  • [45] The parameter estimation algorithms based on the dynamical response measurement data
    Xu, Ling
    ADVANCES IN MECHANICAL ENGINEERING, 2017, 9 (11):
  • [46] Parameter estimation in a model based approach for tomographic perfusion measurement
    Neukirchen, Christoph
    Rose, Georg
    2005 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2005, : 2235 - 2239
  • [47] ONLINE MEASUREMENT-BASED MODEL PARAMETER-ESTIMATION FOR SYNCHRONOUS GENERATORS - MODEL DEVELOPMENT AND IDENTIFICATION SCHEMES
    HUANG, CT
    CHEN, YT
    CHANG, CL
    HUANG, CY
    CHIANG, HD
    WANG, JC
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 1994, 9 (02) : 330 - 336
  • [48] Operational Experiences of WAMS-based Damping Estimation Methods
    Seppanen, Janne
    Nikkila, Antti-Juhani
    Turunen, Jukka
    Haarla, Liisa
    2017 IEEE MANCHESTER POWERTECH, 2017,
  • [50] A Parameter Estimation and Deep Learning Hybrid Extraction Network for Multidirectional Human Activity Recognition Based on mmWave Radar
    Ding, Congzhang
    Guo, Shisheng
    Cui, Guolong
    Yang, Xiaobo
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 5769 - 5782