Feature selection in high-dimensional classification via an adaptive multifactor evolutionary algorithm with local search

被引:0
|
作者
Li, Zhihui [1 ]
Li, Hong [1 ]
Gao, Weifeng [1 ]
Xie, Jin [1 ]
Slowik, Adam [2 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710126, Peoples R China
[2] Koszalin Univ Technol, Dept Elect & Comp Sci, Koszalin, Poland
基金
中国博士后科学基金;
关键词
Feature selection; Evolutionary multitasking; Multifactor optimization; Local search; High-dimensional dataset classification; Knowledge transfer; DIFFERENTIAL EVOLUTION;
D O I
10.1016/j.asoc.2024.112574
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As datasets grow in dimension and sample size, feature selection becomes increasingly important in machine learning. Features are often associated with multiple tasks, so adopting a multi-task optimization framework in feature selection can improve its classification performance. Multifactor optimization provides a powerful evolutionary multi-tasking paradigm capable of simultaneously handling multiple related optimization tasks. Taking inspiration from these, this article proposes a parameter adaptive multifactor feature selection algorithm (AMFEA). To help the algorithm escape from local optima, AMFEA uses a local search strategy to assist the algorithm in finding the global optimum. In addition, AMFEA has designed an adaptive knowledge transfer parameter matrix that dynamically adjusts parameter sizes based on the population's fitness to control the frequency of knowledge transfer between tasks. This effectively transfers knowledge between different tasks and helps the algorithm converge quickly. Experimental results on 18 high-dimensional datasets show that AMFEA significantly improves classification accuracy compared with evolutionary algorithms and traditional feature selection methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] An adaptive pyramid PSO for high-dimensional feature selection
    Jin, Xiao
    Wei, Bo
    Deng, Li
    Yang, Shanshan
    Zheng, Junbao
    Wang, Feng
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 257
  • [22] Simultaneous Feature Selection and Classification for High-Dimensional Data
    Pai, Vriddhi
    Gupta, Subhash Chand
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON GREEN COMPUTING AND INTERNET OF THINGS (ICGCIOT 2018), 2018, : 153 - 158
  • [23] A new search algorithm for feature selection in high-dimensional remote-sensing images
    Bruzzone, L
    Serpico, SB
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING IV, 1998, 3500 : 34 - 41
  • [24] High-Dimensional Multimodal Feature Selection Based on Evolutionary Computation
    Ding, Zhuanlian
    Hu, Xi
    Cao, Liie
    Sun, Dengdi
    Zhang, Xingyi
    Wang, Chenxu
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2024, 58 (09): : 117 - 128
  • [25] Feature Subset Selection for High-Dimensional, Low Sampling Size Data Classification Using Ensemble Feature Selection With a Wrapper-Based Search
    Mandal, Ashis Kumar
    Nadim, MD.
    Saha, Hasi
    Sultana, Tangina
    Hossain, Md. Delowar
    Huh, Eui-Nam
    IEEE ACCESS, 2024, 12 : 62341 - 62357
  • [26] An adaptively balanced grey wolf optimization algorithm for feature selection on high-dimensional classification
    Wang, Jing
    Lin, Dakun
    Zhang, Yuanzi
    Huang, Shiguo
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 114
  • [27] Clustering high-dimensional data via feature selection
    Liu, Tianqi
    Lu, Yu
    Zhu, Biqing
    Zhao, Hongyu
    BIOMETRICS, 2023, 79 (02) : 940 - 950
  • [28] Investigation on particle swarm optimisation for feature selection on high-dimensional data: local search and selection bias
    Binh Tran
    Xue, Bing
    Zhang, Mengjie
    Su Nguyen
    CONNECTION SCIENCE, 2016, 28 (03) : 270 - 294
  • [29] Extremely High-Dimensional Feature Selection via Feature Generating Samplings
    Li, Shutao
    Wei, Dan
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (06) : 737 - 747
  • [30] A dynamic stochastic search algorithm for high-dimensional optimization problems and its application to feature selection
    Liu, Qi
    Liu, Mengxue
    Wang, Fengde
    Xiao, Wensheng
    KNOWLEDGE-BASED SYSTEMS, 2022, 244