Soliton dynamics in partially PT-symmetric two-dimensional Bessel lattices

被引:1
|
作者
Felix-Rendon, Ulises [1 ]
Iakushev, Denis [2 ,3 ]
Bilal, Muhammad Musavir [4 ]
Lopez-Aguayo, Servando [1 ]
机构
[1] Tecnol Monterrey, Escuela Ingn & Ciencias, Ave Eugenio Garza Sada 2501, Monterrey 64849, Nuevo Leon, Mexico
[2] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[3] Hamburg Univ Technol, Inst Opt & Elect Mat, D-21073 Hamburg, Germany
[4] Ctr Invest Opt, Prol Constituc 607, Aguascalientes 20200, Mexico
关键词
solitons; optical lattices; Bessel beams; nondiffracting beams; PT-Symmetry; REAL SPECTRA; FAMILIES;
D O I
10.1088/1402-4896/ad7adc
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamics of two-dimensional spatial solitons supported by partially-parity-time ( PPT )-symmetric optical Bessel lattices. We show that these solitons with an imposed tilt can follow an oscillating or even a whole rotary trajectory in the transverse plane guided by a Bessel optical lattice. Due to the complex optical potential, these rotary solitons can also suffer from amplification or attenuation. Interestingly, we found that it is possible to find quasi-stability regions of parameters where there is a balance between the imposed tilt and the PPT -symmetric potential, allowing the launched spatial dissipative solitons to complete several rotations in their propagation.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Gap solitons in PT-symmetric lattices with a lower refractive-index core
    Dong, Liangwei
    Gu, Linlin
    Guo, Dengchu
    PHYSICAL REVIEW A, 2015, 91 (05):
  • [32] Bounded solutions of the Dirac equation with a PT-symmetric kink-like vector potential in two-dimensional space-time
    Jia, Chun-Sheng
    Diao, Yong-Feng
    Liu, Jian-Yi
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (03) : 664 - 672
  • [33] Bounded Solutions of the Dirac Equation with a PT-symmetric Kink-Like Vector Potential in Two-Dimensional Space-Time
    Chun-Sheng Jia
    Yong-Feng Diao
    Jian-Yi Liu
    International Journal of Theoretical Physics, 2008, 47 : 664 - 672
  • [34] PT-SYMMETRIC DOUBLE-WELL POTENTIALS REVISITED: BIFURCATIONS, STABILITY AND DYNAMICS
    Rodrigues, A. S.
    Li, K.
    Achilleos, V.
    Kevrekidis, P. G.
    Frantzeskakis, D. J.
    Bender, C. M.
    ROMANIAN REPORTS IN PHYSICS, 2013, 65 (01) : 5 - 26
  • [35] Dynamics and nonlinear modes of nonlinear saturable PT-symmetric coupler
    Abdullaev, F. Kh
    Abdumalikov, A. A.
    OPTIK, 2020, 219 (219):
  • [36] Low Threshold Optical Bistability in Aperiodic PT-Symmetric Lattices Composited with Fibonacci Sequence Dielectrics and Graphene
    Zhao, Dong
    Xu, Bin
    Guo, Huang
    Xu, Wuxiong
    Zhong, Dong
    Ke, Shaolin
    APPLIED SCIENCES-BASEL, 2019, 9 (23):
  • [37] Rectifiable PT-symmetric Quantum Toboggans with Two Branch Points
    Znojil, M.
    ACTA POLYTECHNICA, 2010, 50 (05) : 84 - 90
  • [38] Dynamics of generalized PT-symmetric dimers with time-periodic gain-loss
    Battelli, F.
    Diblik, J.
    Feckan, M.
    Pickton, J.
    Pospisil, M.
    Susanto, H.
    NONLINEAR DYNAMICS, 2015, 81 (1-2) : 353 - 371
  • [39] Perturbation Theory for PT-Symmetric Sinusoidal Optical Lattices at the Symmetry-Breaking Threshold
    Jones, H. F.
    ACTA POLYTECHNICA, 2011, 51 (04) : 21 - 25
  • [40] Sublattice dynamics and quantum state transfer of doublons in two-dimensional lattices
    Bello, M.
    Creffield, C. E.
    Platero, G.
    PHYSICAL REVIEW B, 2017, 95 (09)