A fractal model for gas-water relative permeability in inorganic shale considering water occurrence state

被引:3
|
作者
Yang, Rui [1 ,2 ]
Ma, Tianran [3 ,4 ]
Kang, Yulong [5 ]
Du, Hongzhou [2 ]
Xie, Shuli [2 ]
Ma, Depeng [6 ]
机构
[1] Shandong Univ Sci & Technol, Shandong Key Lab Min Disaster Prevent & Control, Qingdao 266590, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Civil Engn & Architecture, Qingdao 266590, Peoples R China
[3] Tech Univ Denmark, Danish Offshore Technol Ctr, DK-2800 Copenhagen, Denmark
[4] China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou 221116, Peoples R China
[5] Res Inst Yanchang Petr Grp Co Ltd, CCUS R&D Ctr, Xian 710065, Peoples R China
[6] Shandong Agr Univ, Coll Water Conservancy & Civil Engn, Tai An 271018, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Gas-water two phase; Relative permeability; Inorganic shale; Fractal model; Water occurrence state; APPARENT PERMEABILITY; POROUS-MEDIA; 2-PHASE FLOW; TRANSPORT; RESERVOIRS; CARBONATE; BASIN; FORM; ROCK;
D O I
10.1016/j.fuel.2024.133664
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Gas-water relative permeability in inorganic shale plays a crucial role in fluid transfer efficiency, therefore it is of paramount importance for modelling shale gas recovery. This study introduces a novel theoretical model to determine gas-water relative permeability in inorganic shale under various water saturations. For the first time, this model integrates the water occurrence state in inorganic shale with the fractal characteristics of pore structures. In particular, three distinct states of water occurrence in inorganic shale pores and two corresponding critical pore sizes are defined in the model based on nuclear magnetic resonance (NMR) testing. The validity and accuracy of the new model have been corroborated by multiple sets of experimental data for shale and other porous rocks. Additionally, the model discussion focus on the water occurrence state in inorganic shale is conducted, and the following results are innovatively obtained: (1) Ignoring pores with only irreducible water results in a 6-26 % overestimation of gas relative permeability (GRP) and approximately 4 % overestimation of water relative permeability (WRP). (2) Omitting pores with both irreducible and movable water leads to a 2-13 % overestimation of GRP and a 1.1 to 21 times overestimation of WRP at various water saturations. (3) Disregarding pores with only movable water causes an approximately 23% underestimation of GRP and a 13-100 % underestimation of WRP at different water saturations. Furthermore, based on the proposed model, the impact of fractal dimension of pore size distribution, fractal dimension of pore tortuosity, irreducible water saturation, and critical pore sizes are also comprehensively analyzed.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A Fractal Model for Gas-Water Relative Permeability in Inorganic Shale with Nanoscale Pores
    Zhang, Tao
    Li, Xiangfang
    Li, Jing
    Feng, Dong
    Wu, Keliu
    Shi, Juntai
    Sun, Zheng
    Han, Song
    TRANSPORT IN POROUS MEDIA, 2018, 122 (02) : 305 - 331
  • [2] A fractal model for gas-water relative permeability curve in shale rocks
    Li, Ran
    Chen, Zhangxin
    Wu, Keliu
    Liu, Xiong
    Dou, Liangbin
    Yang, Sheng
    Xu, Jinze
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2020, 81
  • [3] A Fractal Model for Gas–Water Relative Permeability in Inorganic Shale with Nanoscale Pores
    Tao Zhang
    Xiangfang Li
    Jing Li
    Dong Feng
    Keliu Wu
    Juntai Shi
    Zheng Sun
    Song Han
    Transport in Porous Media, 2018, 122 : 305 - 331
  • [4] An Improved Relative Permeability Model for Gas-Water Displacement in Fractal Porous Media
    Wang, Huimin
    Wang, Jianguo
    Wang, Xiaolin
    Hu, Bowen
    WATER, 2020, 12 (01)
  • [5] A model for predicting gas-water relative permeability of rock media based on fractal dimension characteristics
    Kong D.
    Zhao M.
    Shi J.
    Teng S.
    Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2023, 45 (07): : 1421 - 1429
  • [6] FRACTAL MODELS FOR GAS-WATER TRANSPORT IN SHALE POROUS MEDIA CONSIDERING WETTING CHARACTERISTICS
    Zhang, Qi
    Wu, Xinyue
    Meng, Qingbang
    Wang, Yan
    Cai, Jianchao
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)
  • [7] Characteristic analysis and fractal model of the gas-water relative permeability of coal under different confining pressures
    Zhang, Xiaoyang
    Wu, Caifang
    Liu, Shunxi
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2017, 159 : 488 - 496
  • [8] A model for evaluating relative gas permeability considering the dynamic occurrence of water in tight reservoirs
    Wang, Zechuan
    Tian, Leng
    Huang, Wenkui
    Chen, Xingshen
    Xu, Wenxi
    Tang, Chuanyi
    Chai, Xiaolong
    Zhu, Yuan
    FUEL, 2025, 386
  • [9] Stress dependent gas-water relative permeability in gas hydrates: A theoretical model
    Lei, Gang
    Liao, Qinzhuo
    Lin, Qiliang
    Zhang, Liangliang
    Xue, Liang
    Chen, Weiqing
    ADVANCES IN GEO-ENERGY RESEARCH, 2020, 4 (03): : 326 - 338
  • [10] MULTIFRACTAL MODELING OF GAS-WATER RELATIVE PERMEABILITY CONSIDERING MULTISCALE AND MULTIEFFECTS: INVESTIGATION OF UNCONVENTIONAL GAS DEVELOPMENT
    Song, Hongqing
    Lao, Junming
    Yang, Hongen
    Xie, Chiyu
    Wang, Jiulong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (08)