Bayesian network structure ensemble learning

被引:0
|
作者
Department of Computer Science, Beijing University of Posts and Telecommunications, Xitu Cheng Lu 10, Beijing [1 ]
100876, China
不详 [2 ]
100044, China
机构
来源
Lect. Notes Comput. Sci. | 2007年 / 454-465期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] An Incremental Structure Learning Approach for Bayesian Network
    Li, Shuohao
    Zhang, Jun
    Sun, Boliang
    Lei, Jun
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 4817 - 4822
  • [22] Structure Learning of Large Scale Bayesian Network
    Xu, Xiang
    Liu, Qing
    Li, Yaping
    Xiao, Lin
    2014 11th Web Information System and Application Conference (WISA), 2014, : 148 - 151
  • [23] Duplicate Detection for Bayesian Network Structure Learning
    Niklas Jahnsson
    Brandon Malone
    Petri Myllymäki
    New Generation Computing, 2017, 35 : 47 - 67
  • [24] Learning bayesian network from structure boundaries
    The PLA Information Engineering University, Zhengzhou
    450000, China
    Dianzi Yu Xinxi Xuebao, 4 (894-899):
  • [25] A hybrid algorithm for Bayesian network structure learning
    Ji, Junzhong
    Hu, Renbing
    Zhang, Hongxun
    Liu, Chunnian
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2009, 46 (09): : 1498 - 1507
  • [26] Bayesian Network Structure Learning with Permutation Tests
    Scutari, Marco
    Brogini, Adriana
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (16-17) : 3233 - 3243
  • [27] Bayesian Network Structure Learning Using Causality
    Xu, Zhen
    Srihari, Sargur N.
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 3546 - 3551
  • [28] Incremental methods for Bayesian network structure learning
    Alcobe, JR
    AI COMMUNICATIONS, 2005, 18 (01) : 61 - 62
  • [29] An Efficient Bayesian Network Structure Learning Strategy
    Joe Suzuki
    New Generation Computing, 2017, 35 : 105 - 124
  • [30] An Efficient Bayesian Network Structure Learning Strategy
    Suzuki, Joe
    NEW GENERATION COMPUTING, 2017, 35 (01) : 105 - 124