Li7P3S11 double-layer electrolyte for silicon-based all-solid-state batteries: Interface SiS2-doping

被引:0
|
作者
Chen, Nantao [1 ]
Li, Huiyao [1 ]
Zou, Youlan [1 ]
Ao, Zhuoran [1 ]
Li, Peiguang [1 ]
Lao, Yinan [1 ]
Wan, Yu [1 ]
机构
[1] Xiangtan Univ, Sch Mat Sci & Engn, Natl Prov Lab Special Funct Thin Film Mat, Xiangtan 411105, Hunan, Peoples R China
关键词
Interface doping; Solid state electrolyte (SEI) film; Sulfide solid electrolytes; Silicon anode; All-solid-state lithium metal battery; THIO-LISICON; LITHIUM; ANODE; COMPOSITE; GLASS; CONDUCTIVITY; PERFORMANCE; STABILITY; CAPACITY; LIQUID;
D O I
10.1016/j.materresbull.2024.113179
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Sulfide solid electrolytes is indispensable for developing all-solid-state batteries with Si-based anode for its superior ionic conductivity and excellent mechanical ductility. However, the unfriendly interface between sulfide and silicon still leads to poor cycling performance. Herein, we report a SiS2-doping Li7P3S11 (LPS-xSi) membrane sandwiched between Li7P3S11 electrolyte and Si electrode to form double-layer sulfide electrolyte (LPS-xSi|LPS). LPS-xSi|LPS double-layer contacts well with Si anode and forms Li-Si alloys at the interface to eliminate the adverse side reactions and promote the Li+ transmission of the interface. The LPS-2Si|LPS possesses the highest ionic conductivity of 5.4 x 10-4 S cm-1 at 30 degrees C. LiIn | LPS-2Si|LPS | LiIn cell works steadily for more than 1000 h at 30 degrees C with 0.1 mA cm-2. The assembled 99 wt.% Si | LPS-2Si|LPS | LiIn cell exhibits an initial discharge capacity of 2208.7 mAh g-1 and remains 339.5 mAh g-1 after 100 cycles.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] In Situ Coating of Li7P3S11 Electrolyte on CuCo2S4/Graphene Nanocomposite as a High-Performance Cathode for All-Solid-State Lithium Batteries
    Cai, Liangting
    Wan, Hongli
    Zhang, Qiang
    Mwizerwa, Jean Pierre
    Xu, Xiaoxiong
    Yao, Xiayin
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (30) : 33810 - 33816
  • [12] Asymmetric double-layer composite electrolyte with enhanced ionic conductivity and interface stability for all-solid-state lithium metal batteries
    Zhao, Binglu
    Ma, Luxiang
    Wu, Kai
    Cao, Mengxiong
    Xu, Minggui
    Zhang, Xinxiang
    Liu, Wen
    Chen, Jitao
    CHINESE CHEMICAL LETTERS, 2021, 32 (01) : 125 - 131
  • [13] Investigation of Li-ion transport in Li7P3S11 and solid-state lithium batteries
    Yu, Chuang
    Ganapathy, Swapna
    van Eck, Ernst R. H.
    van Eijck, Lambert
    de Klerk, Niek
    Kelder, Erik M.
    Wagemaker, Marnix
    JOURNAL OF ENERGY CHEMISTRY, 2019, 38 : 1 - 7
  • [14] Li2S-Li2O-P2S5 solid electrolyte for all-solid-state lithium batteries
    Trevey, James E.
    Gilsdorf, Jeremy R.
    Miller, Sean W.
    Lee, Se-Hee
    SOLID STATE IONICS, 2012, 214 : 25 - 30
  • [15] Thermodynamics and Kinetics of the Cathode-Electrolyte Interface in All-Solid-State Li-S Batteries
    Chandrappa, Manas Likhit Holekevi
    Qi, Ji
    Chen, Chi
    Banerjee, Swastika
    Ong, Shyue Ping
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (39) : 18009 - 18022
  • [16] Improved Cycle Properties of All-Solid-State Li-Ion Batteries with Al2O3 Coating on the Silicon-Based Anode
    Jeong, Jejun
    Lee, Kikang
    Carpenter, Cole
    Shrestha, Sushovan
    Kim, Jongbeom
    Chung, Hee-Suk
    Moon, Jeongtak
    Oh, Kyu Hwan
    Sun, Jeong-Yun
    Lee, Se-Hee
    JOURNAL OF ENERGY ENGINEERING, 2024, 150 (02)
  • [17] Outstanding cycle stability and rate capabilities of the all-solid-state Li-S battery with a Li7P3S11 glass-ceramic electrolyte and a core-shell S@BP2000 nanocomposite
    Han, Qigao
    Li, Xuelei
    Shi, Xixi
    Zhang, Hongzhou
    Song, Dawei
    Ding, Fei
    Zhang, Lianqi
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (08) : 3895 - 3902
  • [18] Impact of Li3BO3 Addition on Solid Electrode-Solid Electrolyte Interface in All-Solid-State Batteries
    Il'ina, Evgeniya
    Pershina, Svetlana
    Antonov, Boris
    Pankratov, Alexander
    MATERIALS, 2021, 14 (22)
  • [19] Enhancing ionic conductivity in Li7P3S11 solid electrolytes via doping strategies: Implications for solid-state lithium-sulfur batteries
    Mirtaleb, Amirhossein
    Wang, Ruigang
    SOLID STATE IONICS, 2025, 423
  • [20] Stabilizing Li7P3S11/lithium metal anode interface by in-situ bifunctional composite layer
    Zhao, Bing
    Shi, Yaru
    Wu, Juan
    Xing, Cong
    Liu, Yiqian
    Ma, Wencheng
    Liu, Xiaoyu
    Jiang, Yong
    Zhang, Jiujun
    CHEMICAL ENGINEERING JOURNAL, 2022, 429