FedMSE: Semi-supervised federated learning approach for IoT network intrusion detection

被引:0
|
作者
Nguyen, Van Tuan [1 ,2 ]
Beuran, Razvan [1 ]
机构
[1] Japan Adv Inst Sci & Technol, 1-1 Asahidai, Nomi, Ishikawa 9231292, Japan
[2] Le Quy Don Tech Univ, 236 Hoang Quoc Viet,Co Nhue 1, Hanoi 10000, Vietnam
关键词
Internet of things; Intrusion detection system; Machine learning; Federated learning;
D O I
10.1016/j.cose.2025.104337
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel federated learning approach for improving IoT network intrusion detection. The rise of IoT has expanded the cyber attack surface, making traditional centralized machine learning methods insufficient due to concerns about data availability, computational resources, transfer costs, and especially privacy preservation. A semi-supervised federated learning model was developed to overcome these issues, combining the Shrink Autoencoder and Centroid one-class classifier (SAE-CEN). This approach enhances the performance of intrusion detection by effectively representing normal network data and accurately identifying anomalies in the decentralized strategy. Additionally, a mean square error-based aggregation algorithm (MSEAvg) was introduced to improve global model performance by prioritizing more accurate local models. The results obtained in our experimental setup, which uses various settings relying on the N-BaIoT dataset and Dirichlet distribution, demonstrate significant improvements in real-world heterogeneous IoT networks in detection accuracy from 93.98 +/- 2.90 to 97.30 +/- 0.49, reduced learning costs when requiring only 50% of gateways participating in the training process, and robustness in large-scale networks.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A Feedback Semi-Supervised Learning With Meta-Gradient for Intrusion Detection
    Cai, Shaokang
    Han, Dezhi
    Li, Dun
    IEEE SYSTEMS JOURNAL, 2023, 17 (01): : 1158 - 1169
  • [42] SEMI-SUPERVISED DYNAMIC CLASSIFICATION FOR INTRUSION DETECTION
    Koochakzadeh, Negar
    Kianmehr, Keivan
    Jida, Jamal
    Lee, Iltae
    Alhajj, Reda
    Rokne, Jon
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2010, 20 (02) : 139 - 154
  • [43] Effective semi-supervised approach towards intrusion detection system using machine learning techniques
    Wagh, Sharmila Kishor
    Kolhe, Satish R.
    INTERNATIONAL JOURNAL OF ELECTRONIC SECURITY AND DIGITAL FORENSICS, 2015, 7 (03) : 290 - 304
  • [44] Semi-Supervised Statistical Approach for Network Anomaly Detection
    Aissa, Naila Belhadj
    Guerroumia, Mohamed
    7TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT 2016) / THE 6TH INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY INFORMATION TECHNOLOGY (SEIT-2016) / AFFILIATED WORKSHOPS, 2016, 83 : 1090 - 1095
  • [45] SemiContour: A Semi-supervised Learning Approach for Contour Detection
    Zhang, Zizhao
    Xing, Fuyong
    Shi, Xiaoshuang
    Yang, Lin
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 251 - 259
  • [46] Semi-supervised machine learning approach for DDoS detection
    Idhammad, Mohamed
    Afdel, Karim
    Belouch, Mustapha
    APPLIED INTELLIGENCE, 2018, 48 (10) : 3193 - 3208
  • [47] Semi-supervised machine learning approach for DDoS detection
    Mohamed Idhammad
    Karim Afdel
    Mustapha Belouch
    Applied Intelligence, 2018, 48 : 3193 - 3208
  • [48] A federated learning approach to network intrusion detection using residual networks in industrial IoT networks
    Chaurasia, Nisha
    Ram, Munna
    Verma, Priyanka
    Mehta, Nakul
    Bharot, Nitesh
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (13): : 18325 - 18346
  • [49] A semi-supervised learning approach for detection of phishing webpages
    Li, Yuancheng
    Xiao, Rui
    Feng, Jingang
    Zhao, Liujun
    OPTIK, 2013, 124 (23): : 6027 - 6033
  • [50] Semi-supervised learning based distributed attack detection framework for IoT
    Rathore, Shailendra
    Park, Jong Hyuk
    APPLIED SOFT COMPUTING, 2018, 72 : 79 - 89