Design of modeling & simulator for ASP realized with the aid of polynomiai radial basis function neural networks

被引:0
|
作者
Kim, Hyun-Ki [1 ]
Lee, Seung-Joo [1 ]
Oh, Sung-Kwun [1 ]
机构
[1] Dept. of Electrical Engineering, University of Suwon, Korea, Republic of
来源
Transactions of the Korean Institute of Electrical Engineers | 2013年 / 62卷 / 04期
关键词
D O I
10.5370/KIEE.2013.62.4.554
中图分类号
学科分类号
摘要
引用
收藏
页码:554 / 561
相关论文
共 50 条
  • [41] Comparison between Traditional Neural Networks and Radial Basis Function Networks
    Xie, Tiantian
    Yu, Hao
    Wilamowski, Bogdan
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2011,
  • [42] Learning errors by radial basis function neural networks and regularization networks
    Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou věžíí 2, Prague 8, Czech Republic
    Int. J. Grid Distrib. Comput., 2009, 1 (49-58):
  • [43] Evolutionary design of radial basis function-based polynomial neural network with the aid of information granulation
    Park H.-S.
    Jin Y.-H.
    Oh S.-K.
    Transactions of the Korean Institute of Electrical Engineers, 2011, 60 (04): : 862 - 870
  • [44] Nonlinear function approximation using radial basis function neural networks
    Husain, H
    Khalid, M
    Yusof, R
    2002 STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT, PROCEEDINGS: GLOBALIZING RESEARCH AND DEVELOPMENT IN ELECTRICAL AND ELECTRONICS ENGINEERING, 2002, : 326 - 329
  • [45] Modeling and prediction of viscosity of water-based nanofluids by radial basis function neural networks
    Zhao, Ningbo
    Wen, Xueyou
    Yang, Jialong
    Li, Shuying
    Wang, Zhitao
    POWDER TECHNOLOGY, 2015, 281 : 173 - 183
  • [46] Integration of Artificial Neural Networks with Radial Basis Function Interpolation in Earthfill Dam Seepage Modeling
    Nourani, Vahid
    Babakhani, Ali
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2013, 27 (02) : 183 - 195
  • [47] Novel nonlinear dynamic system modeling approach using radial basis function neural networks
    Li, Y.J.
    Wu, T.J.
    Zhao, M.W.
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2001, 21 (03):
  • [48] DYNAMIC BACKGROUND MODELING BASED ON RADIAL BASIS FUNCTION NEURAL NETWORKS FOR MOVING OBJECT DETECTION
    Do, Ben-Hsiang
    Huang, Shih-Chia
    2011 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2011,
  • [49] Nonlinear behavioral modeling of power amplifiers using radial-basis function neural networks
    Isaksson, M
    Wisell, D
    Rönnow, D
    2005 IEEE MTT-S International Microwave Symposium, Vols 1-4, 2005, : 1967 - 1970
  • [50] Modeling of heavy ion collisions using radial basis function and generalized regression neural networks
    El-Dahshan, El-Sayed A.
    CANADIAN JOURNAL OF PHYSICS, 2011, 89 (10) : 1051 - 1060