A generalized fault diagnosis framework for rotating machinery based on phase entropy

被引:2
|
作者
Wang, Zhenya [1 ]
Zhang, Meng [4 ]
Chen, Hui [3 ]
Li, Jinghu [1 ]
Li, Gaosong [5 ]
Zhao, Jingshan [1 ]
Yao, Ligang [2 ]
Zhang, Jun [2 ]
Chu, Fulei [1 ]
机构
[1] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China
[2] Fuzhou Univ, Sch Mech Engn & Automat, Fuzhou 350108, Peoples R China
[3] Univ Malaya, Dept Mech Engn, Kuala Lumpur 50603, Malaysia
[4] Hefei iFly Digital Technol Co Ltd, Hefei 230088, Peoples R China
[5] HuangHuai Univ, Sch Intelligent Mfg Inst, Zhumadian 463000, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Rotating machinery; Fault diagnosis; Phase entropy; Twin support vector machine;
D O I
10.1016/j.ress.2024.110745
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To enhance the generalization capability of rotating machinery fault diagnosis, a novel generalized fault diagnosis framework is proposed. Phase entropy is introduced as a new method for measuring mechanical signal complexity. Furthermore, it is extended to refined time-shift multi-scale phase entropy. The extended method effectively captures dynamic characteristic information across multiple scales, providing a comprehensive reflection of the equipment's state. Based on signal amplitude, multiple time-shift multi-scale decomposition subsignals are constructed, and a scatter diagram is generated for each sub-signal. Subsequently, the diagram is partitioned into several regions, and the distribution probability of each region is calculated, enabling the extraction of stable and easily distinguishable features through the refined operation. Next, the one-versus-onebased twin support vector machine classifier is employed to achieve high-accuracy fault identification. Case analyses of a wind turbine, an aero-engine, a train transmission system, and an aero-bearing demonstrate that the accuracy, precision, recall, and F1 score of the proposed framework are over 99.51 %, 99.52 %, 99.51 %, and 99.51 %, respectively, using only five training samples per state. The proposed framework achieves higher accuracy compared to nine existing models via deep learning or machine learning. The aforementioned analysis results validate the accuracy and generalizability of the proposed framework.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] A convolutional multisensor fusion fault diagnosis framework based on multidimensional distance matrix for rotating machinery
    Yu, Tianzhuang
    Jiang, Zeyu
    Ren, Zhaohui
    Zhang, Zilin
    Zhang, Yongchao
    Zhou, Shihua
    Zhou, Xin
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024,
  • [42] A Novel Acoustic-Based Framework for Compound Fault Diagnosis in Rotating Machinery With Limited Samples
    Tu, Fengmiao
    Zhang, Tangli
    Liu, Tao
    Zhang, Dingcheng
    Yang, Suixian
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [43] A new intelligent fault diagnosis framework for rotating machinery based on deep transfer reinforcement learning
    Yang, Daoguang
    Karimi, Hamid Reza
    Pawelczyk, Marek
    CONTROL ENGINEERING PRACTICE, 2023, 134
  • [44] The Study of Fault Diagnosis in Rotating Machinery
    Othman, Nor Azlan
    Damanhuri, Nor Salwa
    Kadirkamanathan, Visakan
    CSPA: 2009 5TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, PROCEEDINGS, 2009, : 69 - 74
  • [45] Application of Rotating Machinery Fault Diagnosis Based on Deep Learning
    Cui, Wei
    Meng, Guoying
    Wang, Aiming
    Zhang, Xinge
    Ding, Jun
    SHOCK AND VIBRATION, 2021, 2021
  • [46] Fault diagnosis of rotating machinery based on SVD, FCM and RST
    Li, RQ
    Chen, J
    Wu, X
    Alugongo, AA
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2005, 27 (1-2): : 128 - 135
  • [47] Concurrent Fault Diagnosis for Rotating Machinery Based on Vibration Sensors
    Zhang, Qing-Hua
    Hu, Qin
    Sun, Guoxi
    Si, Xiaosheng
    Qin, Aisong
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2013,
  • [48] Fault diagnosis of rotating machinery based on vector ambiguity function
    Shandong University, Jinan 250061, China
    不详
    Zhongguo Jixie Gongcheng, 2006, SUPPL. 2 (74-77):
  • [49] Feature Denoising-based Fault Diagnosis for Rotating machinery
    Hq, Qin
    Si, Xiao-Sheng
    Lv, Yun-Rong
    2020 35TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2020, : 284 - 287
  • [50] Fault diagnosis of rotating machinery based on SVD, FCM and RST
    Ru-qiang Li
    Jin Chen
    Xing Wu
    Alfayo A. Alugongo
    The International Journal of Advanced Manufacturing Technology, 2005, 27 : 128 - 135