A generalized fault diagnosis framework for rotating machinery based on phase entropy

被引:4
|
作者
Wang, Zhenya [1 ]
Zhang, Meng [4 ]
Chen, Hui [3 ]
Li, Jinghu [1 ]
Li, Gaosong [5 ]
Zhao, Jingshan [1 ]
Yao, Ligang [2 ]
Zhang, Jun [2 ]
Chu, Fulei [1 ]
机构
[1] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China
[2] Fuzhou Univ, Sch Mech Engn & Automat, Fuzhou 350108, Peoples R China
[3] Univ Malaya, Dept Mech Engn, Kuala Lumpur 50603, Malaysia
[4] Hefei iFly Digital Technol Co Ltd, Hefei 230088, Peoples R China
[5] HuangHuai Univ, Sch Intelligent Mfg Inst, Zhumadian 463000, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Rotating machinery; Fault diagnosis; Phase entropy; Twin support vector machine;
D O I
10.1016/j.ress.2024.110745
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To enhance the generalization capability of rotating machinery fault diagnosis, a novel generalized fault diagnosis framework is proposed. Phase entropy is introduced as a new method for measuring mechanical signal complexity. Furthermore, it is extended to refined time-shift multi-scale phase entropy. The extended method effectively captures dynamic characteristic information across multiple scales, providing a comprehensive reflection of the equipment's state. Based on signal amplitude, multiple time-shift multi-scale decomposition subsignals are constructed, and a scatter diagram is generated for each sub-signal. Subsequently, the diagram is partitioned into several regions, and the distribution probability of each region is calculated, enabling the extraction of stable and easily distinguishable features through the refined operation. Next, the one-versus-onebased twin support vector machine classifier is employed to achieve high-accuracy fault identification. Case analyses of a wind turbine, an aero-engine, a train transmission system, and an aero-bearing demonstrate that the accuracy, precision, recall, and F1 score of the proposed framework are over 99.51 %, 99.52 %, 99.51 %, and 99.51 %, respectively, using only five training samples per state. The proposed framework achieves higher accuracy compared to nine existing models via deep learning or machine learning. The aforementioned analysis results validate the accuracy and generalizability of the proposed framework.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Rotating Machinery Fault Diagnosis Based on EMD-Approximate Entropy and LS-SVM
    Dai, Guiping
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, 2010, 93 : 485 - 492
  • [42] Fault diagnosis method of rotating machinery based on SILPDA
    Dong X.
    Zhao R.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (02): : 16 - 22
  • [43] A new fault diagnosis method of rotating machinery
    Chen, Chih-Hao
    Shyu, Rong-Juin
    Ma, Chih-Kao
    SHOCK AND VIBRATION, 2008, 15 (06) : 585 - 598
  • [44] A Novel Method for Fault Diagnosis of Rotating Machinery
    Tang, Meng
    Liao, Yaxuan
    Luo, Fan
    Li, Xiangshun
    ENTROPY, 2022, 24 (05)
  • [45] Feature extraction based on generalized permutation entropy for condition monitoring of rotating machinery
    Lin, Jinshan
    Dou, Chunhong
    Liu, Yingjie
    NONLINEAR DYNAMICS, 2022, 107 (01) : 855 - 870
  • [46] INTELLIGENT FAULT DIAGNOSIS OF ROTATING MACHINERY BASED ON DEEP NEURAL NETWORK
    Zhang, Xiuchun
    Xia, Hong
    Liu, Yongkang
    Zhu, Shaomin
    Jiang, Yingying
    Zhang, Jiyu
    Liu, Jie
    Yin, Wenzhe
    PROCEEDINGS OF 2024 31ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 1, ICONE31 2024, 2024,
  • [47] Infrared Image Combined with CNN Based Fault Diagnosis for Rotating Machinery
    Liu, Ziwang
    Wang, Jinjiang
    Duan, Lixiang
    Shi, Tiefeng
    Fu, Qiang
    2017 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2017, : 137 - 142
  • [48] A novel expert system of fault diagnosis based on vibration for rotating machinery
    He, Qing
    Zhao, Xiaotong
    Du, Dongmei
    JOURNAL OF MEASUREMENTS IN ENGINEERING, 2013, 1 (04) : 219 - 227
  • [49] A Fault Diagnosis Method for Rotating Machinery Based on CNN With Mixed Information
    Zhao, Zhiqian
    Jiao, Yinghou
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (08) : 9091 - 9101
  • [50] A rule-based classifier ensemble for fault diagnosis of rotating machinery
    Dou, Dongyang
    Jiang, Jian
    Wang, Yuling
    Zhang, Yong
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2018, 32 (06) : 2509 - 2515