A generalized fault diagnosis framework for rotating machinery based on phase entropy

被引:2
|
作者
Wang, Zhenya [1 ]
Zhang, Meng [4 ]
Chen, Hui [3 ]
Li, Jinghu [1 ]
Li, Gaosong [5 ]
Zhao, Jingshan [1 ]
Yao, Ligang [2 ]
Zhang, Jun [2 ]
Chu, Fulei [1 ]
机构
[1] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China
[2] Fuzhou Univ, Sch Mech Engn & Automat, Fuzhou 350108, Peoples R China
[3] Univ Malaya, Dept Mech Engn, Kuala Lumpur 50603, Malaysia
[4] Hefei iFly Digital Technol Co Ltd, Hefei 230088, Peoples R China
[5] HuangHuai Univ, Sch Intelligent Mfg Inst, Zhumadian 463000, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Rotating machinery; Fault diagnosis; Phase entropy; Twin support vector machine;
D O I
10.1016/j.ress.2024.110745
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To enhance the generalization capability of rotating machinery fault diagnosis, a novel generalized fault diagnosis framework is proposed. Phase entropy is introduced as a new method for measuring mechanical signal complexity. Furthermore, it is extended to refined time-shift multi-scale phase entropy. The extended method effectively captures dynamic characteristic information across multiple scales, providing a comprehensive reflection of the equipment's state. Based on signal amplitude, multiple time-shift multi-scale decomposition subsignals are constructed, and a scatter diagram is generated for each sub-signal. Subsequently, the diagram is partitioned into several regions, and the distribution probability of each region is calculated, enabling the extraction of stable and easily distinguishable features through the refined operation. Next, the one-versus-onebased twin support vector machine classifier is employed to achieve high-accuracy fault identification. Case analyses of a wind turbine, an aero-engine, a train transmission system, and an aero-bearing demonstrate that the accuracy, precision, recall, and F1 score of the proposed framework are over 99.51 %, 99.52 %, 99.51 %, and 99.51 %, respectively, using only five training samples per state. The proposed framework achieves higher accuracy compared to nine existing models via deep learning or machine learning. The aforementioned analysis results validate the accuracy and generalizability of the proposed framework.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Rotating machinery fault diagnosis based on fuzzy theory
    Lv, Z. (lvzhanjieyouxiang@163.com), 1600, Sila Science, University Mah Mekan Sok, No 24, Trabzon, Turkey (32):
  • [32] Thermal image based fault diagnosis for rotating machinery
    Janssens, Olivier
    Schulz, Raiko
    Slavkovikj, Viktor
    Stockman, Kurt
    Loccufier, Mia
    Van de Walle, Rik
    Van Hoecke, Sofie
    INFRARED PHYSICS & TECHNOLOGY, 2015, 73 : 78 - 87
  • [33] Fault diagnosis of rotating machinery based on DVMD denoising
    Yin X.-L.
    Mu Z.-L.
    Wang Y.-Q.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2022, 39 (07): : 1324 - 1334
  • [34] A time series and deep fusion framework for rotating machinery fault diagnosis
    Zhang, Jiasheng
    Hu, Di
    Yang, Tao
    Zhou, Hongkuan
    Li, Xianling
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 128
  • [35] An Integrated Framework of Fourier Transform and Transformer for Rotating Machinery Fault Diagnosis
    Liu, Xiaopeng
    Liu, Jiale
    Sun, Bingxiang
    Zhang, Weige
    2024 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT, ICPHM 2024, 2024, : 161 - 166
  • [36] Multiscale Diversity Entropy: A Novel Dynamical Measure for Fault Diagnosis of Rotating Machinery
    Wang, Xianzhi
    Si, Shubin
    Li, Yongbo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (08) : 5419 - 5429
  • [37] Fuzzy diversity entropy as a nonlinear measure for the intelligent fault diagnosis of rotating machinery
    Jiao, Zehang
    Noman, Khandaker
    He, Qingbo
    Deng, Zichen
    Li, Yongbo
    Eliker, K.
    ADVANCED ENGINEERING INFORMATICS, 2025, 64
  • [38] Fault detection and diagnosis of rotating machinery
    Loparo, KA
    Adams, ML
    Lin, W
    Abdel-Magied, MF
    Afshari, N
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2000, 47 (05) : 1005 - 1014
  • [39] Fault detection and diagnosis in rotating machinery
    Loparo, KA
    Afshari, N
    Abdel-Magied, M
    1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 2986 - 2991
  • [40] A fusion TFDAN-Based framework for rotating machinery fault diagnosis under noisy labels
    Yuan, Xiaoming
    Zhang, Zhikang
    Liang, Pengfei
    Zheng, Zhi
    Zhang, Lijie
    APPLIED ACOUSTICS, 2024, 219