Optimization of distributed energy resources planning and battery energy storage management via large-scale multi-objective evolutionary algorithm

被引:0
|
作者
Ali, Aamir [1 ]
Bughio, Ateeq-u-Rehman [1 ]
Abbas, Ghulam [2 ]
Keerio, M. U. [1 ]
Mugheri, N. H. [1 ]
Memon, Shaina [1 ]
Saand, A. S. [1 ]
机构
[1] Quaid e Awam Univ Engn Sci & Technol, Dept Elect Engn, Nawabshah 67450, Sindh, Pakistan
[2] Southeast Univ, Sch Elect Engn, Nanjing 210096, Peoples R China
关键词
Distribution network; Distributed generation; Battery energy storage system; Multi-objective evolutionary algorithm; OPTIMAL NETWORK RECONFIGURATION; DISTRIBUTION-SYSTEM; GENETIC ALGORITHM; OPTIMAL PLACEMENT; LOSS REDUCTION; OPTIMAL ALLOCATION; SEARCH OPTIMIZATION; ELECTRIC VEHICLES; GENERATION; LOAD;
D O I
10.1016/j.energy.2024.133463
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper investigates the synergistic integration of renewable energy sources and battery energy storage systems to enhance the sustainability, reliability, and flexibility of modern power systems. Addressing a critical gap in distribution networks, particularly regarding the variability of renewable energy, the study aims to minimize energy costs, emission rates, and reliability indices by optimizing the placement and sizing of wind and solar photovoltaic generators alongside battery energy storage systems. An improved large-scale multi-objective evolutionary algorithm with a bi-directional sampling strategy is employed.Two scenarios are considered. In the first scenario, six study cases are analyzed to determine the optimal number, location, and size of distributed generators at peak load demand. The proposed algorithm outperforms existing state-of-the-art methods for smallscale distributed resource allocation. In the second scenario, a multi-period load demand across various seasons is evaluated, introducing new opportunities for battery energy storage systems. The problem is modeled with intertemporal constraints, creating a large-scale optimization challenge. Results demonstrate significant improvements: cost savings of up to 51.67 %, power reductions of up to 76.78 %, and a 99.9 % improvement in voltage deviation. Emission rates decreased by 99.92 % in case 1, 95.19 % in case 2, and 97.38 % in case 3, compared to the base case. The proposed algorithm shows superior convergence and performance in solving both small- and large-scale optimization problems, outperforming recent multi-objective evolutionary algorithms.This study provides a robust framework for optimizing renewable energy integration and battery energy storage, offering a scalable solution to modern power system challenges.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Multi-objective planning framework for stochastic and controllable distributed energy resources
    Alarcon-Rodriguez, A.
    Haesen, E.
    Ault, G.
    Driesen, J.
    Belmans, R.
    IET RENEWABLE POWER GENERATION, 2009, 3 (02) : 227 - 238
  • [22] A multi-granularity clustering based evolutionary algorithm for large-scale sparse multi-objective optimization
    Tian, Ye
    Shao, Shuai
    Xie, Guohui
    Zhang, Xingyi
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 84
  • [23] Fast Evolutionary Algorithm for Solving Large-Scale Multi-objective Problems
    Leonteva, Anna Ouskova
    Parrend, Pierre
    Jeannin-Girardon, Anne
    Collet, Pierre
    ARTIFICIAL EVOLUTION, EA 2019, 2020, 12052 : 82 - 95
  • [24] Evolutionary Computation for Large-scale Multi-objective Optimization: A Decade of Progresses
    Wen-Jing Hong
    Peng Yang
    Ke Tang
    International Journal of Automation and Computing, 2021, 18 : 155 - 169
  • [25] Evolutionary Computation for Large-scale Multi-objective Optimization: A Decade of Progresses
    Hong, Wen-Jing
    Yang, Peng
    Tang, Ke
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2021, 18 (02) : 155 - 169
  • [26] Benchmarking large-scale subset selection in evolutionary multi-objective optimization
    Shang, Ke
    Shu, Tianye
    Ishibuchi, Hisao
    Nan, Yang
    Pang, Lie Meng
    INFORMATION SCIENCES, 2023, 622 : 755 - 770
  • [27] An adaptive two-stage evolutionary algorithm for large-scale continuous multi-objective optimization
    Lin, Qiuzhen
    Li, Jun
    Liu, Songbai
    Ma, Lijia
    Li, Jianqiang
    Chen, Jianyong
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 77
  • [28] Cooperative tri-population based evolutionary algorithm for large-scale multi-objective optimization
    Zhang, Weiwei
    Wang, Sanxing
    Li, Guoqing
    Zhang, Weizheng
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 227
  • [29] A learning and potential area-mining evolutionary algorithm for large-scale multi-objective optimization
    Wu, Xiangjuan
    Wang, Yuping
    Wang, Ziqing
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [30] Directed Quick Search Guided Evolutionary Algorithm for Large-scale Multi-objective Optimization Problems
    Wu, Ying
    Yang, Na
    Chen, Long
    Tian, Ye
    Tang, Zhenzhou
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023, 2023, : 777 - 785