Effective 1D-equation with a Lambert W function nonlinearity for cigar-shaped Bose-Einstein condensates

被引:0
作者
Couto, Hugo L. C. [1 ]
Avelar, Ardiley T. [2 ]
Cardoso, Wesley B. [2 ]
机构
[1] Inst Fed Educ Ciencia & Tecnol Goias, BR-75804714 Jatai, Goias, Brazil
[2] Univ Fed Goias, Inst Fis, BR-74690900 Goiania, GO, Brazil
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2025年 / 140卷
关键词
Bose-Einstein condensate; Effective equations; Anti-Gaussian potential; Lambert W function; VORTEX; WAVES;
D O I
10.1016/j.cnsns.2024.108447
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive an effective 1D equation based on the work of Mateo and Delgado [Phys. Rev. A 77, 013617 (2008)] that governs the axial dynamics of mean-field cigar-shaped Bose- Einstein condensates (BECs) with repulsive interatomic interactions and subject to transverse anti-Gaussian confining potential. The resulting equation exhibits a nonstandard nonlinearity written in terms of the principal branch of the Lambert W function. This equation appropriately encompasses the correct limits within the Thomas-Fermi (TF) and perturbative regimes. The validity of our findings was established through a comparative analysis with numerical solutions derived from the complete three-dimensional Gross-Pitaevskii equation, including those about the limiting cases encountered in the TF and perturbative regimes.
引用
收藏
页数:9
相关论文
共 57 条
  • [31] Effective mean-field equations for cigar-shaped and disk-shaped Bose-Einstein condensates
    Mateo, A. Munoz
    Delgado, V.
    [J]. PHYSICAL REVIEW A, 2008, 77 (01)
  • [32] Gap solitons in elongated geometries: The one-dimensional Gross-Pitaevskii equation and beyond
    Mateo, A. Munoz
    Delgado, V.
    Malomed, Boris A.
    [J]. PHYSICAL REVIEW A, 2011, 83 (05)
  • [33] Extension of the Thomas-Fermi approximation for trapped Bose-Einstein condensates with an arbitrary number of atoms
    Mateo, A. Munoz
    Delgado, V.
    [J]. PHYSICAL REVIEW A, 2006, 74 (06):
  • [34] Dark solitons in cigar-shaped Bose-Einstein condensates in double-well potentials
    Middelkamp, S.
    Theocharis, G.
    Kevrekidis, P. G.
    Frantzeskakis, D. J.
    Schmelcher, P.
    [J]. PHYSICAL REVIEW A, 2010, 81 (05):
  • [35] Symmetry breaking in Bose-Einstein condensates confined by a funnel potential
    Miranda, Bruno M.
    dos Santos, Mateus C. P.
    Cardoso, Wesley B.
    [J]. PHYSICS LETTERS A, 2022, 452
  • [36] Ground-state properties of trapped Bose-Einstein condensates: Extension of the Thomas-Fermi approximation
    Munoz Mateo, A.
    Delgado, V.
    [J]. PHYSICAL REVIEW A, 2007, 75 (06):
  • [37] Effective equations for matter-wave gap solitons in higher-order transversal states
    Munoz Mateo, A.
    Delgado, V.
    [J]. PHYSICAL REVIEW E, 2013, 88 (04):
  • [38] Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap
    Muruganandam, P.
    Adhikari, S. K.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (10) : 1888 - 1912
  • [39] Faraday waves in high-density cigar-shaped Bose-Einstein condensates
    Nicolin, Alexandru I.
    Raportaru, Mihaela Carina
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (21) : 4663 - 4667
  • [40] Nisha Maan N, 2020, PHYS LETT A, V384, DOI [10.1016/j.physleta.2020.126675, DOI 10.1016/j.physleta.2020.126675]