A novel domain-private-suppress meta-recognition network based universal domain generalization for machinery fault diagnosis

被引:0
|
作者
Xu, Mengdi [1 ]
Zhang, Yingjie [1 ]
Lu, Biliang [1 ]
Liu, Zhaolin [1 ]
Sun, Qingshuai [1 ]
机构
[1] Hunan Univ HNU, Dept Informat Sci & Engn, Changsha 410000, Peoples R China
关键词
Machinery fault diagnosis; Domain generalization; Channel-level transferability; Meta-recognition calibration; ROTATING MACHINERY; BEARING;
D O I
10.1016/j.knosys.2024.112775
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain generalization aims to generalize knowledge to target domains not seen during the training phase, even in domain gaps. However, in complex industrial settings, the emergence of new fault types is frequent. Concurrently, the rarity of these faults means that the data collected may not fully capture the entire range of potential fault conditions. Asa result, it is challenging to ensure that there is an overlap between the label sets of the multi-source domains and the unseen target domains. This problem requires no prior knowledge of label sets, and it requires a model to learn from multi-source domains and perform well on unknown target domains. In this paper, we propose a Domain-Private-Suppress Meta-Recognition Network (DPSMR). It quantifies channel-level transferability to continuously enhance the robustness of channels to domain shifts, thereby promoting the generalization of a common label set. Using an enhanced meta-recognition calibration algorithm to avoid overconfidence in neural network predictions, we ensure the successful recognition of private samples. By employing dual-consistency loss, we reduce channel instability and facilitate learning domain-invariant features. Experimental results on two multi-domain datasets demonstrate that DPSMR outperforms the state-of-the-art methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Fault diagnosis of unknown device based on dynamic model and domain generalization
    Gong, Fengjin
    Wang, Tingqiang
    Huang, Xiaofang
    Zhou, Jie
    Zhang, Kai
    Ma, Ping
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 338 - 343
  • [32] Meta-learning Based Domain Generalization Framework for Fault Diagnosis With Gradient Aligning and Semantic Matching
    Ren, Lei
    Mo, Tingyu
    Cheng, Xuejun
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (01) : 754 - 764
  • [33] Multiple Source-Free Domain Adaptation Network Based on Knowledge Distillation for Machinery Fault Diagnosis
    Yue, Ke
    Li, Jipu
    Chen, Zhuyun
    Huang, Ruyi
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [34] Research on Rotating Machinery Fault Diagnosis Based on Improved Multi-target Domain Adversarial Network
    Haitao Wang
    Xiang Liu
    Instrumentation, 2024, 11 (01) : 38 - 50
  • [35] Pair-Wise Orthogonal Classifier Based Domain Adaptation Network for Fault Diagnosis in Rotating Machinery
    Chen, Zixu
    Yu, Wennian
    Ding, Xiaoxi
    Shao, Yimin
    Mechefske, Chris K.
    IEEE SENSORS JOURNAL, 2022, 22 (12) : 12086 - 12097
  • [36] Clustering-Guided Novel Unsupervised Domain Adversarial Network for Partial Transfer Fault Diagnosis of Rotating Machinery
    Cao, Hongru
    Shao, Haidong
    Liu, Bin
    Cai, Baoping
    Cheng, Junsheng
    IEEE SENSORS JOURNAL, 2022, 22 (14) : 14387 - 14396
  • [37] A New Adversarial Domain Generalization Network Based on Class Boundary Feature Detection for Bearing Fault Diagnosis
    Li, Jingde
    Shen, Changqing
    Kong, Lin
    Wang, Dong
    Xia, Min
    Zhu, Zhongkui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [38] Domain Generalization D3QN for Machinery Fault Diagnosis Across Different Working Conditions
    Bo, Lin
    He, Mugeng
    Chen, Bingkui
    Liu, Xiaofeng
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2024, 60 (22): : 165 - 178
  • [39] Domain Transferability-Based Deep Domain Generalization Method Towards Actual Fault Diagnosis Scenarios
    Shi, Yaowei
    Deng, Aidong
    Deng, Minqiang
    Li, Jing
    Xu, Meng
    Zhang, Shun
    Ding, Xue
    Xu, Shuo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (06) : 7355 - 7366
  • [40] Curriculum learning-based domain generalization for cross-domain fault diagnosis with category shift
    Wang, Yu
    Gao, Jie
    Wang, Wei
    Yang, Xu
    Du, Jinsong
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 212