A novel domain-private-suppress meta-recognition network based universal domain generalization for machinery fault diagnosis

被引:0
|
作者
Xu, Mengdi [1 ]
Zhang, Yingjie [1 ]
Lu, Biliang [1 ]
Liu, Zhaolin [1 ]
Sun, Qingshuai [1 ]
机构
[1] Hunan Univ HNU, Dept Informat Sci & Engn, Changsha 410000, Peoples R China
关键词
Machinery fault diagnosis; Domain generalization; Channel-level transferability; Meta-recognition calibration; ROTATING MACHINERY; BEARING;
D O I
10.1016/j.knosys.2024.112775
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain generalization aims to generalize knowledge to target domains not seen during the training phase, even in domain gaps. However, in complex industrial settings, the emergence of new fault types is frequent. Concurrently, the rarity of these faults means that the data collected may not fully capture the entire range of potential fault conditions. Asa result, it is challenging to ensure that there is an overlap between the label sets of the multi-source domains and the unseen target domains. This problem requires no prior knowledge of label sets, and it requires a model to learn from multi-source domains and perform well on unknown target domains. In this paper, we propose a Domain-Private-Suppress Meta-Recognition Network (DPSMR). It quantifies channel-level transferability to continuously enhance the robustness of channels to domain shifts, thereby promoting the generalization of a common label set. Using an enhanced meta-recognition calibration algorithm to avoid overconfidence in neural network predictions, we ensure the successful recognition of private samples. By employing dual-consistency loss, we reduce channel instability and facilitate learning domain-invariant features. Experimental results on two multi-domain datasets demonstrate that DPSMR outperforms the state-of-the-art methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] A novel sample selection approach based universal unsupervised domain adaptation for fault diagnosis of rotating machinery
    Lu, Biliang
    Zhang, Yingjie
    Liu, Zhaohua
    Wei, Hualiang
    Sun, Qingshuai
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 240
  • [12] Domain generalization network based on inter-domain multivariate linearization for intelligent fault diagnosis
    Guan, Wei
    Wang, Shuai
    Chen, Zeren
    Wang, Guoqiang
    Liu, Zhengbin
    Cui, Da
    Mao, Yiwei
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 261
  • [13] Single domain generalization method based on anti-causal learning for rotating machinery fault diagnosis
    Zhang, Guowei
    Kong, Xianguang
    Wang, Qibin
    Du, Jingli
    Wang, Jinrui
    Ma, Hongbo
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 250
  • [14] Novel Triplet Loss-Based Domain Generalization Network for Bearing Fault Diagnosis with Unseen Load Condition
    Shen, Bingbing
    Zhang, Min
    Yao, Le
    Song, Zhihuan
    PROCESSES, 2024, 12 (05)
  • [15] A Novel Multidomain Contrastive-Coding-Based Open-Set Domain Generalization Framework for Machinery Fault Diagnosis
    Lu, Biliang
    Zhang, Yingjie
    Sun, Qingshuai
    Li, Ming
    Li, Pude
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (04) : 6369 - 6381
  • [16] A federated distillation domain generalization framework for machinery fault diagnosis with data privacy
    Zhao, Chao
    Shen, Weiming
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 130
  • [17] Domain Adversarial Transfer Network for Cross-Domain Fault Diagnosis of Rotary Machinery
    Chen, Zhuyun
    He, Guolin
    Li, Jipu
    Liao, Yixiao
    Gryllias, Konstantinos
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (11) : 8702 - 8712
  • [18] Multisource domain factorization network for cross-domain fault diagnosis of rotating machinery: An unsupervised multisource domain adaptation method
    Shi, Yaowei
    Deng, Aidong
    Ding, Xue
    Zhang, Shun
    Xu, Shuo
    Li, Jing
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 164
  • [19] Pair-Wise Orthogonal Classifier Based Domain Adaptation Network for Fault Diagnosis in Rotating Machinery
    Chen, Zixu
    Yu, Wennian
    Ding, Xiaoxi
    Shao, Yimin
    Mechefske, Chris K.
    IEEE SENSORS JOURNAL, 2022, 22 (12) : 12086 - 12097
  • [20] A blockchain-empowered secure federated domain generalization framework for machinery fault diagnosis
    Zhang, Shucheng
    Jiang, Pei
    Li, Xiaobin
    Yin, Chao
    Wang, Xi Vincent
    ADVANCED ENGINEERING INFORMATICS, 2024, 62