A novel domain-private-suppress meta-recognition network based universal domain generalization for machinery fault diagnosis

被引:0
|
作者
Xu, Mengdi [1 ]
Zhang, Yingjie [1 ]
Lu, Biliang [1 ]
Liu, Zhaolin [1 ]
Sun, Qingshuai [1 ]
机构
[1] Hunan Univ HNU, Dept Informat Sci & Engn, Changsha 410000, Peoples R China
关键词
Machinery fault diagnosis; Domain generalization; Channel-level transferability; Meta-recognition calibration; ROTATING MACHINERY; BEARING;
D O I
10.1016/j.knosys.2024.112775
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain generalization aims to generalize knowledge to target domains not seen during the training phase, even in domain gaps. However, in complex industrial settings, the emergence of new fault types is frequent. Concurrently, the rarity of these faults means that the data collected may not fully capture the entire range of potential fault conditions. Asa result, it is challenging to ensure that there is an overlap between the label sets of the multi-source domains and the unseen target domains. This problem requires no prior knowledge of label sets, and it requires a model to learn from multi-source domains and perform well on unknown target domains. In this paper, we propose a Domain-Private-Suppress Meta-Recognition Network (DPSMR). It quantifies channel-level transferability to continuously enhance the robustness of channels to domain shifts, thereby promoting the generalization of a common label set. Using an enhanced meta-recognition calibration algorithm to avoid overconfidence in neural network predictions, we ensure the successful recognition of private samples. By employing dual-consistency loss, we reduce channel instability and facilitate learning domain-invariant features. Experimental results on two multi-domain datasets demonstrate that DPSMR outperforms the state-of-the-art methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A domain generalization network for imbalanced machinery fault diagnosis
    Guo, Yu
    Ju, Guangshuo
    Zhang, Jundong
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [2] Federated adversarial domain generalization network: A novel machinery fault diagnosis method with data privacy
    Wang, Rui
    Huang, Weiguo
    Shi, Mingkuan
    Wang, Jun
    Shen, Changqing
    Zhu, Zhongkui
    KNOWLEDGE-BASED SYSTEMS, 2022, 256
  • [3] Domain generalization for rotating machinery fault diagnosis: A survey
    Xiao, Yiming
    Shao, Haidong
    Yan, Shen
    Wang, Jie
    Peng, Ying
    Liu, Bin
    ADVANCED ENGINEERING INFORMATICS, 2025, 64
  • [4] A universal fault diagnosis framework for marine machinery based on domain adaptation
    Guo, Yu
    Zhang, Jundong
    Sun, Bin
    Wang, Yongkang
    OCEAN ENGINEERING, 2024, 302
  • [5] Chemical fault diagnosis network based on single domain generalization
    Guo, Yu
    Zhang, Jundong
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 188 : 1133 - 1144
  • [6] A novel sample selection approach based universal unsupervised domain adaptation for fault diagnosis of rotating machinery
    Lu, Biliang
    Zhang, Yingjie
    Liu, Zhaohua
    Wei, Hualiang
    Sun, Qingshuai
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 240
  • [7] Cross-Domain Fault Diagnosis via Meta-Learning-Based Domain Generalization
    Yue, Fengyu
    Wang, Yong
    2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 1826 - 1832
  • [8] Deep Semisupervised Domain Generalization Network for Rotary Machinery Fault Diagnosis Under Variable Speed
    Liao, Yixiao
    Huang, Ruyi
    Li, Jipu
    Chen, Zhuyun
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (10) : 8064 - 8075
  • [9] A Novel Weighted Adversarial Transfer Network for Partial Domain Fault Diagnosis of Machinery
    Li, Weihua
    Chen, Zhuyun
    He, Guolin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (03) : 1753 - 1762
  • [10] Dual disentanglement domain generalization method for rotating Machinery fault diagnosis
    Zhang, Guowei
    Kong, Xianguang
    Ma, Hongbo
    Wang, Qibin
    Du, Jingli
    Wang, Jinrui
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 228