Machine Learning Techniques in Enhanced Oil Recovery Screening Using Semisupervised Label Propagation

被引:0
作者
Vaziri, Pouya [1 ]
Ahmadi, Sanyar [2 ]
Daneshfar, Fatemeh [2 ]
Sedaee, Behnam [1 ]
Alimohammadi, Hamzeh [3 ]
Rasaei, Mohammad Reza [1 ]
机构
[1] Univ Tehran, Inst Petr Engn, Sch Chem Engn, Coll Engn, Tehran, Iran
[2] Univ Kurdistan, Dept Comp Engn, Kurdistan, Iran
[3] Univ Calgary, Dept Chem & Petr Engn, Sch Engn, Calgary, AB, Canada
来源
SPE JOURNAL | 2024年 / 29卷 / 09期
关键词
CROSS-VALIDATION; DECISION TREE; EOR; CLASSIFICATION; PREDICTION; FRAMEWORK; CRITERIA;
D O I
10.2118/221475-PA
中图分类号
TE [石油、天然气工业];
学科分类号
0820 ;
摘要
Efficiently choosing the optimal enhanced oil recovery (EOR) technique is a critical requirement in reservoir engineering. Machine learning (ML) methods, with a well- established history of application, serve as a swift and dependable tool for EOR screening. In this paper, we aim to evaluate the effectiveness of various ML algorithms for EOR screening, utilizing a comprehensive database of nearly 1,000 EOR projects. This study delves into a comprehensive evaluation of regression and classification- based algorithms to develop a reliable screening system for EOR predictions and address challenges such as limited labeled data and missing values. Our analysis considered various EOR processes, including gas injection, chemical, and thermal EOR techniques. Various ML methods such as random forest (NBC), logistic regression (LR), and decision tree (DT) are applied, enabling both intermethod comparisons and evaluations against advanced methods, multiobjective deep artificial neural networks (MDANN), and multiobjective artificial neural networks (MANN). These advanced techniques provide the unique capability to concurrently address both regression and classification tasks. Considering that conventional methods can only be implemented on a single task, the RF, MANN, MDANN, and KNN algorithms demonstrated top- tier performance in our classification analysis. Regarding the regression task, KNN, RF, and MDANN displayed exceptional performance, signifying their prowess in predictive accuracy. However, MANN exhibited moderate performance in regression analysis. In addition, our study identified areas where certain algorithms, such as support vector regression (SVR), exhibited weaker performance, highlighting the importance of comprehensive model evaluation. This paper contributes novel insights into the application of ML techniques for EOR screening in the petroleum industry. By addressing challenges such as limited labeled data and missing values and by providing a thorough evaluation of various ML algorithms, our study offers valuable information for decision- makers in the oil and gas sector, aiding in the selection of suitable algorithms for EOR projects. In addition, the use of semisupervised label propagation and advanced techniques like KNN imputation adds to the existing body of literature, enhancing the state of knowledge in this domain.
引用
收藏
页码:4557 / 4578
页数:22
相关论文
共 50 条
  • [21] Towards compound identification of synthetic opioids in nontargeted screening using machine learning techniques
    Klingberg, Joshua
    Cawley, Adam
    Shimmon, Ronald
    Fu, Shanlin
    DRUG TESTING AND ANALYSIS, 2021, 13 (05) : 990 - 1000
  • [22] A Review of Machine Learning Techniques using Decision Tree and Support Vector Machine
    Somvanshi, Madan
    Tambade, Shital
    Chavan, Pranjali
    Shinde, S. V.
    2016 INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2016,
  • [23] Enhanced Cardiovascular Disease Prediction Modelling using Machine Learning Techniques: A Focus on CardioVitalnet
    Ejiyi, Chukwuebuka Joseph
    Qin, Zhen
    Nneji, Grace Ugochi
    Monday, Happy Nkanta
    Agbesi, Victor K.
    Ejiyi, Makuachukwu Bennedith
    Ejiyi, Thomas Ugochukwu
    Bamisile, Olusola O.
    NETWORK-COMPUTATION IN NEURAL SYSTEMS, 2024,
  • [24] An Experimental Study of Improving Viscous Oil Recovery by Using Hybrid Enhanced Oil Recovery Techniques: A Case Study of Alaska North Slope Reservoir
    Cheng, Yaoze
    Zhang, Yin
    Dandekar, Abhijit
    Li, Jiawei
    SPE JOURNAL, 2022, 27 (01): : 820 - 839
  • [25] Spatial modeling of susceptibility to subsidence using machine learning techniques
    Mohammady, Majid
    Pourghasemi, Hamid Reza
    Amiri, Mojtaba
    Tiefenbacher, John P.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2021, 35 (08) : 1689 - 1700
  • [26] Reconstructing Daily Discharge in a Megadelta Using Machine Learning Techniques
    Hung Vo Thanh
    Doan Van Binh
    Kantoush, Sameh A.
    Nourani, Vahid
    Saber, Mohamed
    Lee, Kang-Kun
    Sumi, Tetsuya
    WATER RESOURCES RESEARCH, 2022, 58 (05)
  • [27] Prognosis Model for Gestational Diabetes Using Machine Learning Techniques
    Amarnath, Sumathi
    Selvamani, Meganathan
    Varadarajan, Vijayakumar
    SENSORS AND MATERIALS, 2021, 33 (09) : 3011 - 3025
  • [28] A Survey on Heart Disease Prediction Using Machine Learning Techniques
    Deepa, V. Amala
    Beena, T. Lucia Agnes
    APPLIED INTELLIGENCE AND INFORMATICS, AII 2023, 2024, 2065 : 243 - 254
  • [29] Classification of geogrid reinforcement in aggregate using machine learning techniques
    Aregbesola, Samuel Olamide
    Byun, Yong-Hoon
    INTERNATIONAL JOURNAL OF GEO-ENGINEERING, 2024, 15 (01)
  • [30] Diabetes prediction using machine learning and explainable AI techniques
    Tasin, Isfafuzzaman
    Nabil, Tansin Ullah
    Islam, Sanjida
    Khan, Riasat
    HEALTHCARE TECHNOLOGY LETTERS, 2023, 10 (1-2) : 1 - 10