Gas Flow Blockage Treatment in Shale Gas: Case Study of Qusaiba Hot Shale, Saudi Arabia

被引:0
|
作者
AlQuraishi, Abdulrahman A. [1 ]
AlMansour, Abdullah O. [1 ]
AlAwfi, Khalid A. [2 ]
Alonaizi, Faisal A. [1 ]
AlYami, Hamdan Q. [1 ]
Ali, Ali M. AlGhamdi [2 ]
机构
[1] King Abdulaziz City Sci & Technol, Min & Hydrocarbon Technol Inst, Riyadh 11442, Saudi Arabia
[2] King Saud Univ, Coll Engn, Dept Petr & Nat Gas Engn, Riyadh 11362, Saudi Arabia
关键词
surfactant; gas flow blockage; shale gas; wettability; capillary pressure; PALEOZOIC PETROLEUM SYSTEM; ORGANIC GEOCHEMISTRY; OIL SHALES; ADSORPTION;
D O I
10.3390/en17205025
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Organic-rich hot Qusaiba shale is the primary source rock of most of the Paleozoic hydrocarbon reservoirs of eastern and central Arabia. Representative near-surface Qusaiba shale samples were collected and characterized from one of its outcrop sections at the Tayma quadrangle in northwest Saudi Arabia. The petrophysical and geochemical characterization indicated porosity and permeability of 8.2% and 2.05 nD, respectively, with good total organic carbon (TOC) of 2.2 mg/g and mature kerogen of gas-prone type III. The tight characteristics of the formation can lead to high capillary pressure and extensive post-fracking water retention, leading to flow blockage and a reduction in gas productivity. Three different surfactants and one ionic liquid, namely, Triton X-100, Triton X-405 and Zonyle FSO surfactants and Ammoeng 102 ionic liquid, were tested as additives to fracking fluid to investigate their effectiveness in optimizing its performance. The chemical solutions exhibited no sign of instability when exposed to solution salinity and temperatures up to 70 degrees C. The investigated chemicals' performance was examined by measuring methane/chemical solutions' surface tension and their ability to alter shale's wettability. The results indicate that Zonyl FSO is the most effective chemical, as it is able to significantly reduce surface tension and, hence, capillary pressure by 66% when added at critical micelle concentration (CMC). Using Zonyl FSO surfactant at a maximum tested concentration of 0.2% induced a relatively smaller capillary pressure drop (54%) due to the drastic drop in the contact angle rendering shale very strongly water-wet. Such a drop in capillary pressure can lower the fracking fluid invasion depth and therefore ease the liquid blockage removal during the flowback stage, enhancing gas recovery during the extended production stage. Triton X-100 at CMC was the second most effective surfactant and was able to induce a quite significant 47% drop in capillary pressure when added at the maximum tested concentration of 0.05%. This was sufficient to remove any liquid blockage but was less likely to alter the wettability of the shale. Based on the findings obtained, it is suggested to reduce the blockage tendency during the fracking process and elevate any existing blockage during the flowback stage by using Zonyl FSO at CMC where IFT is at its minimum with a higher contact angle.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] The impacts of microcosmic flow in nanoscale shale matrix pores on the gas production of a hydraulically fractured shale-gas well
    Zhao, Jinzhou
    Li, Zhiqiang
    Hu, Yongquan
    Ren, Lan
    Tao, Zhengwu
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2016, 29 : 431 - 439
  • [32] Modeling and simulation of gas flow behavior in shale reservoirs
    Kudapa V.K.
    Sharma P.
    Kunal V.
    Gupta D.K.
    Journal of Petroleum Exploration and Production Technology, 2017, 7 (4) : 1095 - 1112
  • [33] Analysis of Wellbore Flow in Shale Gas Horizontal Wells
    Zeng, Linjuan
    Cai, Daogang
    Zhao, Yunhai
    Ye, Changqing
    Luo, Chengcheng
    FDMP-FLUID DYNAMICS & MATERIALS PROCESSING, 2023, 19 (11): : 2813 - 2825
  • [34] Shale gas flow model in matrix nanoscale pore
    Research Institute of Petroleum Exploration & Development, CNPC, Beijing, China
    Nat. Gas Geosci., 3 (575-579): : 575 - 579
  • [35] Shale gas effective fracture network volume prediction and analysis based on flow back data: A case study of southern Sichuan Basin shale
    Ren, Lan
    Wang, Zhenhua
    Zhao, Jinzhou
    Lin, Ran
    Wu, Jianfa
    Song, Yi
    Tang, Dengji
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 228
  • [36] Study on pressure-boosting stimulation technology in shale gas horizontal wells in the Fuling shale gas field
    Shi, Wenrui
    Zhang, Chaomo
    Jiang, Shu
    Liao, Yong
    Shi, Yuanhui
    Feng, Aiguo
    Young, Steven
    ENERGY, 2022, 254
  • [37] Corrosion evaluation and control of a shale gas gathering and transportation system: A case study of the Changning-Weiyuan National Shale Gas Demonstration Area
    Xie M.
    Tang Y.
    Song B.
    Zhao W.
    Wu G.
    Natural Gas Industry, 2020, 40 (11) : 127 - 134
  • [38] Gas Multiple Flow Mechanisms and Apparent Permeability Evaluation in Shale Reservoirs
    Feng, Xuelei
    Ma, Fengshan
    Zhao, Haijun
    Liu, Gang
    Guo, Jie
    SUSTAINABILITY, 2019, 11 (07)
  • [39] Imbibition Characteristics and Its Influencing Factors of Shale Gas Reservoirs: A Case Study of the Longmaxi Shale in Southeast Chongqing
    Chen, Fangwen
    Qin, Shuo
    Ding, Xue
    Pang, Shuyi
    Wang, Min
    Yang, Dong
    Huang, Yanchao
    ACS OMEGA, 2025, : 14413 - 14424
  • [40] Numerical simulation of gas-liquid flow in inclined shale gas pipelines
    Qin, Min
    Liao, Kexi
    Chen, Sijia
    He, Guoxi
    Zhang, Shijian
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2023, 190 : 605 - 618