Energy, exergy, and exergoeconomic evaluations of a novel power, steam, and hydrogen system based of molten carbonate fuel cell driver

被引:2
作者
Balakheli, Mohammad Mahdi [1 ]
Mehregan, Mahmood [1 ]
Hashemian, Seyed Majid [1 ]
机构
[1] Shahrood Univ Technol, Fac Mech Engn, POB 3619995161, Shahrood, Iran
关键词
Simultaneous production of power; Steam; And hydrogen; Molten carbonate fuel cell; Proton exchange membrane electrolyzer; Organic fluids; GAS-TURBINE; PERFORMANCE ASSESSMENT; STIRLING ENGINE; CYCLE SYSTEM; CCHP SYSTEM; PLANT; OPTIMIZATION; ELECTROLYZER; COLLECTOR; CAPTURE;
D O I
10.1016/j.ijhydene.2024.09.276
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Considering the importance of using systems with high productivity, in order to reduce fuel consumption and economic savings, multiple production systems can be an attractive option. In this study, a simultaneous production system of power, steam and hydrogen based on molten carbonate fuel cell with methane fuel source is presented. The proposed system consists of four main parts, molten carbonate fuel cell, heat recovery steam generator, proton exchange membrane electrolyzer, and organic Rankine cycle. The system is evaluated from viewpoints of energy, exergy and exergeoeconomics. In the organic Rankine cycle, R141b has the best performance in terms of electricity production, organic fluid consumption, and efficiency among the proposed organic fluids, so that with R141b the efficiency reaches to 18.31%. Also, 68.85% of heat recovery is done by the heat recovery steam generator and the rest is done by the heat recovery vapor generator. The energy, exergy, and electrical efficiencies of the proposed system are 64.29, 63.53, and 39.69%, respectively, which shows a good performance compared to many power plants. The highest exergy destruction occurs in the air heat exchanger with 45673 kW. The operating cost rate of the system is 2.38 $/s and the hydrogen production rate is 3.67 kg/h.
引用
收藏
页码:1436 / 1450
页数:15
相关论文
共 38 条
[1]   Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis [J].
Ahmadi, Pouria ;
Dincer, Ibrahim ;
Rosen, Marc A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (04) :1795-1805
[2]   Conceptual design, exergoeconomic analysis and multi-objective optimization for a novel integration of biomass-fueled power plant with MCFC-cryogenic CO2 separation unit for low-carbon power production [J].
Akrami, Ehsan ;
Ameri, Mohammad ;
Rocco, Matteo, V .
ENERGY, 2021, 227
[3]   Investigation of a combined molten carbonate fuel cell, gas turbine and Stirling engine combined cooling heating and power (CCHP) process by exergy cost sensitivity analysis [J].
Ansarinasab, Hojat ;
Mehrpooya, Mehdi .
ENERGY CONVERSION AND MANAGEMENT, 2018, 165 :291-303
[4]   Energy and exergy analysis of internal reforming solid oxide fuel cell-gas turbine hybrid system [J].
Bavarsad, Pegah Ghanbari .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (17) :4591-4599
[5]   Technoeconomic and exergy analysis of a solar geothermal hybrid electric power plant using a novel combined cycle [J].
Bonyadi, Nima ;
Johnson, Evan ;
Baker, Derek .
ENERGY CONVERSION AND MANAGEMENT, 2018, 156 :542-554
[6]   CO2 capture from combined cycles integrated with Molten Carbonate Fuel Cells [J].
Campanari, Stefano ;
Chiesa, Paolo ;
Manzolini, Giampaolo .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2010, 4 (03) :441-451
[7]   The retrofitting of a coal-fired subcritical steam power plant for carbon dioxide capture: A comparison between MCFC-based active systems and conventional MEA [J].
Carapellucci, Roberto ;
Di Battista, Davide ;
Cipollone, Roberto .
ENERGY CONVERSION AND MANAGEMENT, 2019, 194 :124-139
[8]   Comparison of different fuel cell temperature control systems in an anode and cathode ejector-based SOFC-GT hybrid system [J].
Chen, Jinwei ;
Li, Yuanfu ;
Zhang, Huisheng ;
Weng, Shilie .
ENERGY CONVERSION AND MANAGEMENT, 2021, 243
[9]   Exergoeconomic and exergoenvironmental analyses of an integrated solar combined cycle system [J].
Cidade Cavalcanti, Eduardo Jose .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 67 :507-519
[10]   Exergoeconomic analysis and determination of power cost in MCFC - steam turbine combined cycle [J].
da Silva, Fellipe Sartori ;
Matelli, Jose A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (33) :18293-18307