Mechanical property and microstructure of fly ash-based geopolymer by calcium activators

被引:0
|
作者
Yu, Jingjing [1 ]
Ji, Fengling [1 ]
Lv, Qingfeng [2 ]
Li, Wei [1 ]
Lin, Zhende [1 ]
Peng, Yuansheng [1 ]
机构
[1] Shenzhen Univ, Coll Civil & Transportat Engn, Natl Engn Res Ctr Deep Shaft Construct, Shenzhen 518060, Peoples R China
[2] Lanzhou Univ, Sch Civil Engn & Mech, Key Lab Mech Disaster & Environm Western China, Minist Educ, Lanzhou 730000, Peoples R China
关键词
Geopolymer; Fly ash; Calcium activators; Mechanical properties; Microstructure analysis; STRENGTH; CONCRETE; BEHAVIOR; WASTE;
D O I
10.1016/j.cscm.2024.e03811
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Geopolymer is a green and environmentally friendly new type of gel material generated from the reaction of activators with silica-alumina raw materials, possessing extensive research and application value. Fly ash can be used as reaction material, enabling the industrial solid waste to be recycled and reused. In this paper, unconfined compressive strength test, X-ray diffraction analysis, Fourier transform infrared light, 29Si nuclear magnetic resonance, scanning electron microscope and energy disperse spectroscopy, and physisorption experiment were carried out to study the effects of the type and dosage on the mechanical property and microstructure of fly ashbased geopolymer activated by calcium hydroxide, calcium sulfate and their compound. The results indicated that calcium hydroxide and calcium sulfate can promote the dissolution of fly ash crystals, providing adequate Ca2+ for the formation of gel products. The products of calcium hydroxide and calcium sulfate activation are hydrated calcium aluminate, hydrated calcium sulfate, and ettringite, respectively. The effect of the compound activator is superior to that of single activators. With the increase of the proportion of calcium hydroxide, the reorganization and polymerization of gel products were accelerated so that the integrity and continuity of the microstructure of geopolymer were improved, and then the strength increased. When the ratio of calcium hydroxide to calcium sulfate was 3:1 and the total dosage was 20 %, the unconfined compressive strength reached the maximum value. According to this study, it was investigated that type and dosage of calcium activators had evident influence on the geopolymerization of fly ash. And the reutilization and resource utilization of fly ash waste can be achieved, which can provide an engineering theoretical basis for using fly ash-based geopolymer to alter the physical and chemical properties of special soils and achieve solidification effect.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Effect of Admixtures on Selected Properties of Fly Ash-Based Geopolymer Composites
    Stankiewicz, Natalia
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [32] The effect of curing on the properties of metakaolin and fly ash-based geopolymer paste
    Gorhan, Gokhan
    Aslaner, Ridvan
    Sinik, Osman
    COMPOSITES PART B-ENGINEERING, 2016, 97 : 329 - 335
  • [33] MICROSTRUCTURE OF SOME FLY ASH BASED GEOPOLYMER BINDERS
    Georgescu, Maria
    Catanescu, Irina
    Voicu, Georgeta
    REVISTA ROMANA DE MATERIALE-ROMANIAN JOURNAL OF MATERIALS, 2011, 41 (03): : 183 - 191
  • [34] The influence of fly ash-based geopolymer on the mechanical properties of OPC-solidified soil
    Chen, Meiling
    Wu, Dazhi
    Chen, Keyu
    Cheng, Peirui
    Tang, Yuhang
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 432
  • [35] Influence of ferrochrome ash on mechanical and microstructure properties of ambient cured fly ash-based geopolymer concrete
    Jyotirmoy Mishra
    Bharadwaj Nanda
    Sanjaya K. Patro
    Shaswat K. Das
    Syed M. Mustakim
    Journal of Material Cycles and Waste Management, 2022, 24 : 1095 - 1108
  • [36] Lightweight fly ash-based geopolymer concrete
    Abdulkareem, Omar A.
    Al Bakri, A. M. Mustafa
    Kamarudin, H.
    Nizar, I. Khairul
    ADVANCED MATERIALS ENGINEERING AND TECHNOLOGY, 2012, 626 : 781 - +
  • [37] Influence of ferrochrome ash on mechanical and microstructure properties of ambient cured fly ash-based geopolymer concrete
    Mishra, Jyotirmoy
    Nanda, Bharadwaj
    Patro, Sanjaya K.
    Das, Shaswat K.
    Mustakim, Syed M.
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2022, 24 (03) : 1095 - 1108
  • [38] Effect of sugarcane bagasse ash addition and curing temperature on the mechanical properties and microstructure of fly ash-based geopolymer concrete
    Rihan, Mohammed Ali M.
    Onchiri, Richard Ocharo
    Gathimba, Naftary
    Sabuni, Bernadette
    OPEN CERAMICS, 2024, 19
  • [39] Physical and mechanical properties of fly ash-based geopolymer with disposable medical mask reinforcement
    Zhang, Xinli
    Li, Xia
    Shen, Dazhi
    Ma, Yulian
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (11)
  • [40] Feasibility Study of Loess Stabilization with Fly Ash-Based Geopolymer
    Liu, Zhen
    Cai, C. S.
    Liu, Fengyin
    Fan, Fenghong
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2016, 28 (05)