Mechanical property and microstructure of fly ash-based geopolymer by calcium activators

被引:0
|
作者
Yu, Jingjing [1 ]
Ji, Fengling [1 ]
Lv, Qingfeng [2 ]
Li, Wei [1 ]
Lin, Zhende [1 ]
Peng, Yuansheng [1 ]
机构
[1] Shenzhen Univ, Coll Civil & Transportat Engn, Natl Engn Res Ctr Deep Shaft Construct, Shenzhen 518060, Peoples R China
[2] Lanzhou Univ, Sch Civil Engn & Mech, Key Lab Mech Disaster & Environm Western China, Minist Educ, Lanzhou 730000, Peoples R China
关键词
Geopolymer; Fly ash; Calcium activators; Mechanical properties; Microstructure analysis; STRENGTH; CONCRETE; BEHAVIOR; WASTE;
D O I
10.1016/j.cscm.2024.e03811
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Geopolymer is a green and environmentally friendly new type of gel material generated from the reaction of activators with silica-alumina raw materials, possessing extensive research and application value. Fly ash can be used as reaction material, enabling the industrial solid waste to be recycled and reused. In this paper, unconfined compressive strength test, X-ray diffraction analysis, Fourier transform infrared light, 29Si nuclear magnetic resonance, scanning electron microscope and energy disperse spectroscopy, and physisorption experiment were carried out to study the effects of the type and dosage on the mechanical property and microstructure of fly ashbased geopolymer activated by calcium hydroxide, calcium sulfate and their compound. The results indicated that calcium hydroxide and calcium sulfate can promote the dissolution of fly ash crystals, providing adequate Ca2+ for the formation of gel products. The products of calcium hydroxide and calcium sulfate activation are hydrated calcium aluminate, hydrated calcium sulfate, and ettringite, respectively. The effect of the compound activator is superior to that of single activators. With the increase of the proportion of calcium hydroxide, the reorganization and polymerization of gel products were accelerated so that the integrity and continuity of the microstructure of geopolymer were improved, and then the strength increased. When the ratio of calcium hydroxide to calcium sulfate was 3:1 and the total dosage was 20 %, the unconfined compressive strength reached the maximum value. According to this study, it was investigated that type and dosage of calcium activators had evident influence on the geopolymerization of fly ash. And the reutilization and resource utilization of fly ash waste can be achieved, which can provide an engineering theoretical basis for using fly ash-based geopolymer to alter the physical and chemical properties of special soils and achieve solidification effect.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Microstructure Characterization of Fly Ash-Based Geopolymer Mortar with Substitution of Oil Palm Ash
    Itteridi, Vike
    Saloma
    Astira, Imron Fikri
    GREEN DESIGN AND MANUFACTURE: ADVANCED AND EMERGING APPLICATIONS, 2018, 2030
  • [22] Mechanical properties of fly ash-based geopolymer concretes at high temperature
    Pistol, Klaus
    Rickard, William D. A.
    Gluth, Gregor J. G.
    BAUTECHNIK, 2016, 93 (08) : 521 - 530
  • [23] A Review on Fly Ash-Based Geopolymer Concrete
    Kupaei, Ramin Hosseini
    Alengaram, U. Johnson
    Bin Jumaat, Mohd Zamin
    ELECTRONIC JOURNAL OF STRUCTURAL ENGINEERING, 2013, 13 (01): : 1 - 6
  • [24] The effect of activators on the fly ash-based geopolymers
    Hou Yunfen
    Wang Dongmin
    ECOLOGICAL ENVIRONMENT AND TECHNOLOGY OF CONCRETE, 2011, 477 : 85 - +
  • [25] On the development of fly ash-based geopolymer concrete
    Hardjito, D
    Wallah, SE
    Sumajouw, DMJ
    Rangan, BV
    ACI MATERIALS JOURNAL, 2004, 101 (06) : 467 - 472
  • [26] Effect of sugarcane bagasse ash addition and curing temperature on the mechanical properties and microstructure of fly ash-based geopolymer concrete
    Rihan, Mohammed Ali M.
    Onchiri, Richard Ocharo
    Gathimba, Naftary
    Sabuni, Bernadette
    OPEN CERAMICS, 2024, 19
  • [27] Lightweight fly ash-based geopolymer concrete
    Abdulkareem, Omar A.
    Al Bakri, A. M. Mustafa
    Kamarudin, H.
    Nizar, I. Khairul
    ADVANCED MATERIALS ENGINEERING AND TECHNOLOGY, 2012, 626 : 781 - +
  • [28] A Comprehensive Review on Fly Ash-Based Geopolymer
    Luhar, Ismail
    Luhar, Salmabanu
    JOURNAL OF COMPOSITES SCIENCE, 2022, 6 (08):
  • [29] Fly Ash-Based Geopolymer Composites: A Review of the Compressive Strength and Microstructure Analysis
    Qaidi, Shaker
    Najm, Hadee Mohammed
    Abed, Suhad M.
    Ahmed, Hemn U.
    Al Dughaishi, Husam
    Al Lawati, Jawad
    Sabri, Mohanad Muayad
    Alkhatib, Fadi
    Milad, Abdalrhman
    MATERIALS, 2022, 15 (20)
  • [30] Influence of Activators on the Dynamic Energy Properties of Fly Ash-Based and Slag-Based Geopolymer Composites
    Zhang, Hengbo
    Luo, Xin
    Wang, Han
    An, Zhipeng
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2019, 31 (02)