Biased random-key genetic algorithms: A review

被引:14
作者
Londe, Mariana A. [1 ]
Pessoa, Luciana S. [1 ]
Andrade, Carlos E. [2 ]
Resende, Mauricio G. C. [3 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Ind Engn, Rua Marques de Sao Vicente 225, BR-22453900 Rio de Janeiro, RJ, Brazil
[2] AT&T Labs Res, 200 South Laurel Ave, Middletown, NJ 07748 USA
[3] Univ Washington, Ind & Syst Engn, 3900 E Stevens Way NE, Seattle, WA 98195 USA
关键词
Biased random-key genetic algorithms; Literature review; Metaheuristics; Applications; FLOWSHOP SCHEDULING PROBLEM; BATCH-PROCESSING MACHINE; WEIGHT SETTING PROBLEM; LOCAL SEARCH; GLOBAL OPTIMIZATION; MAXIMUM LATENESS; BERTH ALLOCATION; HEURISTICS; ASSIGNMENT; NETWORKS;
D O I
10.1016/j.ejor.2024.03.030
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper is a comprehensive literature review of Biased Random-Key Genetic Algorithms (BRKGA). BRKGA is a metaheuristic that employs random-key-based chromosomes with biased, uniform, and elitist mating strategies in a genetic algorithm framework. The review encompasses over 150 papers with a wide range of applications, including classical combinatorial optimization problems, real-world industrial use cases, and non-orthodox applications such as neural network hyperparameter tuning in machine learning. Scheduling is by far the most prevalent application area in this review, followed by network design and location problems. The most frequent hybridization method employed is local search, and new features aim to increase population diversity. We also detail challenges and future directions for this method. Overall, this survey provides a comprehensive overview of the BRKGA metaheuristic and its applications and highlights important areas for future research.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 215 条
[41]   A non-dominated sorting based customized random-key genetic algorithm for the bi-objective traveling thief problem [J].
Chagas, Jonatas B. C. ;
Blank, Julian ;
Wagner, Markus ;
Souza, Marcone J. F. ;
Deb, Kalyanmoy .
JOURNAL OF HEURISTICS, 2021, 27 (03) :267-301
[42]   The double traveling salesman problem with partial last-in-first-out loading constraints [J].
Chagas, Jonatas B. C. ;
Toffolo, Tulio A. M. ;
Souza, Marcone J. F. ;
Iori, Manuel .
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2022, 29 (04) :2346-2373
[43]   A biased random key genetic algorithm approach for inventory-based multi-item lot-sizing problem [J].
Chan, F. T. S. ;
Tibrewal, Rupak Kumar ;
Prakash, Anuj ;
Tiwari, M. K. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2015, 229 (01) :157-171
[44]   Hybrid method with CS and BRKGA applied to the minimization of tool switches problem [J].
Chaves, A. A. ;
Lorena, L. A. N. ;
Senne, E. L. F. ;
Resende, M. G. C. .
COMPUTERS & OPERATIONS RESEARCH, 2016, 67 :174-183
[45]   A parallel branch-and-cut and an adaptive metaheuristic to solve the Family Traveling Salesman Problem [J].
Chaves, Antonio Augusto ;
Vianna, Barbara Lessa ;
da Silva, Tiago Tiburcio ;
Schenekemberg, Cleder Marcos .
EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
[46]   Adaptive biased random-key genetic algorithm with local search for the capacitated centered clustering problem [J].
Chaves, Antonio Augusto ;
Goncalves, Jose Fernando ;
Nogueira Lorena, Luiz Antonio .
COMPUTERS & INDUSTRIAL ENGINEERING, 2018, 124 :331-346
[47]   SCHEDULING FOR A SINGLE SEMICONDUCTOR BATCH-PROCESSING MACHINE TO MINIMIZE TOTAL WEIGHTED TARDINESS [J].
Chou, Fuh-Der ;
Wang, Hui-Mei .
JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING, 2008, 25 (02) :136-147
[48]   Optimizing the artificial neural network parameters using a biased random key genetic algorithm for time series forecasting [J].
Cicek, Zeynep Idil Erzurum ;
Ozturk, Zehra Kamisli .
APPLIED SOFT COMPUTING, 2021, 102
[49]  
Cooper H., 2015, Research synthesis and meta-analysis: A step-by-step approach, V2
[50]  
Cotta C., 2018, Handbook of Heuristics, V1-2, P607, DOI [10.1007/978-3-319-07124-429, DOI 10.1007/978-3-319-07124-4_29]