Biased random-key genetic algorithms: A review

被引:11
作者
Londe, Mariana A. [1 ]
Pessoa, Luciana S. [1 ]
Andrade, Carlos E. [2 ]
Resende, Mauricio G. C. [3 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Ind Engn, Rua Marques de Sao Vicente 225, BR-22453900 Rio de Janeiro, RJ, Brazil
[2] AT&T Labs Res, 200 South Laurel Ave, Middletown, NJ 07748 USA
[3] Univ Washington, Ind & Syst Engn, 3900 E Stevens Way NE, Seattle, WA 98195 USA
关键词
Biased random-key genetic algorithms; Literature review; Metaheuristics; Applications; FLOWSHOP SCHEDULING PROBLEM; BATCH-PROCESSING MACHINE; WEIGHT SETTING PROBLEM; LOCAL SEARCH; GLOBAL OPTIMIZATION; MAXIMUM LATENESS; BERTH ALLOCATION; HEURISTICS; ASSIGNMENT; NETWORKS;
D O I
10.1016/j.ejor.2024.03.030
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper is a comprehensive literature review of Biased Random-Key Genetic Algorithms (BRKGA). BRKGA is a metaheuristic that employs random-key-based chromosomes with biased, uniform, and elitist mating strategies in a genetic algorithm framework. The review encompasses over 150 papers with a wide range of applications, including classical combinatorial optimization problems, real-world industrial use cases, and non-orthodox applications such as neural network hyperparameter tuning in machine learning. Scheduling is by far the most prevalent application area in this review, followed by network design and location problems. The most frequent hybridization method employed is local search, and new features aim to increase population diversity. We also detail challenges and future directions for this method. Overall, this survey provides a comprehensive overview of the BRKGA metaheuristic and its applications and highlights important areas for future research.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 215 条
[31]   A biased random-key genetic algorithm for single-round divisible load scheduling [J].
Brandao, Julliany S. ;
Noronha, Thiago F. ;
Resende, Mauricio G. C. ;
Ribeiro, Celso C. .
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2015, 22 (05) :823-839
[32]  
Bresina JL, 1996, PROCEEDINGS OF THE THIRTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE EIGHTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE, VOLS 1 AND 2, P271
[33]   A genetic algorithm applied to optimal allocation in stratified sampling [J].
Brito, Jose ;
Fadel, Augusto ;
Semaan, Gustavo .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (07) :3714-3732
[34]   The effective BRKGA algorithm for the k-medoids clustering problem [J].
Brito, Jose Andre ;
Semaan, Gustavo ;
Fadel, Augusto .
RAIRO-OPERATIONS RESEARCH, 2022, 56 (04) :3137-3153
[35]   Survivable IP network design with OSPF routing [J].
Buriol, L. S. ;
Resende, M. G. C. ;
Thorup, M. .
NETWORKS, 2007, 49 (01) :51-64
[36]   A hybrid genetic algorithm for the weight setting problem in OSPF/IS-IS routing [J].
Buriol, LS ;
Resende, MGC ;
Ribeiro, CC ;
Thorup, M .
NETWORKS, 2005, 46 (01) :36-56
[37]   A biased random-key genetic algorithm for road congestion minimization [J].
Buriol, Luciana S. ;
Hirsch, Michael J. ;
Pardalos, Panos M. ;
Querido, Tania ;
Resende, Mauricio G. C. ;
Ritt, Marcus .
OPTIMIZATION LETTERS, 2010, 4 (04) :619-633
[38]   Bi-objective scheduling on a restricted batching machine [J].
Cabo, Marta ;
Luis Gonzalez-Velarde, Jose ;
Possani, Edgar ;
Rios Solis, Yasmin A. .
COMPUTERS & OPERATIONS RESEARCH, 2018, 100 :201-210
[39]   A biased random-key genetic algorithm for the set orienteering problem [J].
Carrabs, Francesco .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 292 (03) :830-854
[40]   A pool-based pattern generation algorithm for logical analysis of data with automatic fine-tuning [J].
Caserta, Marco ;
Reiners, Torsten .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 248 (02) :593-606