Biased random-key genetic algorithms: A review

被引:11
作者
Londe, Mariana A. [1 ]
Pessoa, Luciana S. [1 ]
Andrade, Carlos E. [2 ]
Resende, Mauricio G. C. [3 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Ind Engn, Rua Marques de Sao Vicente 225, BR-22453900 Rio de Janeiro, RJ, Brazil
[2] AT&T Labs Res, 200 South Laurel Ave, Middletown, NJ 07748 USA
[3] Univ Washington, Ind & Syst Engn, 3900 E Stevens Way NE, Seattle, WA 98195 USA
关键词
Biased random-key genetic algorithms; Literature review; Metaheuristics; Applications; FLOWSHOP SCHEDULING PROBLEM; BATCH-PROCESSING MACHINE; WEIGHT SETTING PROBLEM; LOCAL SEARCH; GLOBAL OPTIMIZATION; MAXIMUM LATENESS; BERTH ALLOCATION; HEURISTICS; ASSIGNMENT; NETWORKS;
D O I
10.1016/j.ejor.2024.03.030
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper is a comprehensive literature review of Biased Random-Key Genetic Algorithms (BRKGA). BRKGA is a metaheuristic that employs random-key-based chromosomes with biased, uniform, and elitist mating strategies in a genetic algorithm framework. The review encompasses over 150 papers with a wide range of applications, including classical combinatorial optimization problems, real-world industrial use cases, and non-orthodox applications such as neural network hyperparameter tuning in machine learning. Scheduling is by far the most prevalent application area in this review, followed by network design and location problems. The most frequent hybridization method employed is local search, and new features aim to increase population diversity. We also detail challenges and future directions for this method. Overall, this survey provides a comprehensive overview of the BRKGA metaheuristic and its applications and highlights important areas for future research.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 215 条
[21]  
Bean J. C., 1994, ORSA Journal on Computing, V6, P154, DOI 10.1287/ijoc.6.2.154
[22]  
Beirao N. C. L. F., 1997, Sistema de apoio a decisao para sequenciamento de operacoes em ambientes job shop
[23]   DYNAMIC PROGRAMMING [J].
BELLMAN, R .
SCIENCE, 1966, 153 (3731) :34-&
[24]   Metaheuristics based on decision hierarchies for the traveling purchaser problem [J].
Bernardino, Raquel ;
Paias, Ana .
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2018, 25 (04) :1269-1295
[25]   SMS-EMOA: Multiobjective selection based on dominated hypervolume [J].
Beume, Nicola ;
Naujoks, Boris ;
Emmerich, Michael .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 181 (03) :1653-1669
[26]   A biased random-key genetic algorithm for the two-stage capacitated facility location problem [J].
Biajoli, Fabricio Lacerda ;
Chaves, Antonio Augusto ;
Nogueira Lorena, Luiz Antonio .
EXPERT SYSTEMS WITH APPLICATIONS, 2019, 115 :418-426
[27]   Heuristic algorithms for integrated workforce allocation and scheduling of perishable products [J].
Bolsi, Beatrice ;
de Lima, Vinicius Loti ;
de Queiroz, Thiago Alves ;
Iori, Manuel .
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2023, 61 (20) :7048-7063
[28]  
Boschetti MA, 2009, LECT NOTES COMPUT SC, V5818, P171, DOI 10.1007/978-3-642-04918-7_13
[29]   A biased random-key genetic algorithm for scheduling heterogeneous multi-round systems [J].
Brandao, Julliany S. ;
Noronha, Thiago F. ;
Resende, Mauricio G. C. ;
Ribeiro, Celso C. .
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2017, 24 (05) :1061-1077
[30]   A biased random-key genetic algorithm to maximize the number of accepted lightpaths in WDM optical networks [J].
Brandao, Julliany S. ;
Noronha, Thiago F. ;
Ribeiro, Celso C. .
JOURNAL OF GLOBAL OPTIMIZATION, 2016, 65 (04) :813-835