PyDicer: An open-source python']python library for conversion and analysis of radiotherapy DICOM data

被引:2
作者
Chlap, Phillip [1 ,2 ,3 ,7 ]
Al Mouiee, Daniel [1 ,2 ,3 ]
Finnegan, Robert N. [4 ,5 ]
Cui, Janet [2 ,8 ]
Chin, Vicky [1 ,2 ,3 ,6 ]
Deshpande, Shrikant [1 ,2 ,3 ]
Holloway, Lois [1 ,2 ,3 ,5 ]
机构
[1] Univ New South Wales, South Western Sydney Clin Sch, Sydney, Australia
[2] Ingham Inst Appl Med Res, Sydney, Australia
[3] Liverpool & Macarthur Canc Therapy Ctr, Dept Radiat Oncol, Sydney, Australia
[4] Royal North Shore Hosp, Sydney, Australia
[5] Univ Sydney, Inst Med Phys, Sydney, Australia
[6] Univ Sydney, Image X Inst, Sydney, Australia
[7] Radformation Inc, New York, NY 10016 USA
[8] Microsoft, Sydney, Australia
关键词
Radiotherapy; Medical image analysis; DICOM; NIfTI; Radiomics; Auto-segmentation;
D O I
10.1016/j.softx.2024.102010
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The organisation, conversion, cleaning and processing of DICOM data is an ongoing challenge across medical image analysis research projects. PyDicer (PYthon Dicom Image ConvertER) was created as a generalisable tool for use across a variety of radiotherapy research projects. This includes the conversion of DICOM objects into a standardised form as well as functionality to visualise, clean and analyse the converted data. The generalisability of PyDicer has been demonstrated by its use across a range of projects including the analysis of radiotherapy dose metrics and radiomics features as well as auto-segmentation training, inference and validation.
引用
收藏
页数:8
相关论文
共 38 条
[31]  
Sharp G.C., 2010, P 16 INT C US COMP R
[32]  
Shrestha A, 2022, RT-Utils: a minimal Python library to facilitate the creation and manipulation of DICOM RTStructs
[33]   Dose to heart substructures is associated with non-cancer death after SBRT in stage I-II NSCLC patients [J].
Stam, Barbara ;
Peulen, Heike ;
Guckenberger, Matthias ;
Mantel, Frederick ;
Hope, Andrew ;
Werner-Wasik, Maria ;
Belderbos, Jose ;
Grills, Inga ;
O'Connell, Nicolette ;
Sonke, Jan-Jakob .
RADIOTHERAPY AND ONCOLOGY, 2017, 123 (03) :370-375
[34]   Changes in serial multiparametric MRI and FDG-PET/CT functional imaging during radiation therapy can predict treatment response in patients with head and neck cancer [J].
Trada, Yuvnik ;
Keall, Paul ;
Jameson, Michael ;
Moses, Daniel ;
Lin, Peter ;
Chlap, Phillip ;
Holloway, Lois ;
Min, Myo ;
Forstner, Dion ;
Fowler, Allan ;
Lee, Mark T. .
EUROPEAN RADIOLOGY, 2023, 33 (12) :8788-8799
[35]   Mid-treatment 18F-FDG PET imaging changes in parotid gland correlates to radiation-induced xerostomia [J].
Trada, Yuvnik ;
Lee, Mark T. ;
Jameson, Michael G. ;
Chlap, Phillip ;
Keall, Paul ;
Moses, Daniel ;
Lin, Peter ;
Fowler, Allan .
RADIOTHERAPY AND ONCOLOGY, 2023, 186
[36]   Impact of tumour region of interest delineation method for mid-treatment FDG-PET response prediction in head and neck squamous cell carcinoma undergoing radiotherapy [J].
Trada, Yuvnik ;
Lin, Peter ;
Lee, Mark T. ;
Jameson, Michael G. ;
Chlap, Phillip ;
Keall, Paul ;
Moses, Daniel ;
Fowler, Allan .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (05) :2822-2836
[37]   Computational Radiomics System to Decode the Radiographic Phenotype [J].
van Griethuysen, Joost J. M. ;
Fedorov, Andriy ;
Parmar, Chintan ;
Hosny, Ahmed ;
Aucoin, Nicole ;
Narayan, Vivek ;
Beets-Tan, Regina G. H. ;
Fillion-Robin, Jean-Christophe ;
Pieper, Steve ;
Aerts, Hugo J. W. L. .
CANCER RESEARCH, 2017, 77 (21) :E104-E107
[38]  
Zhao C, 2022, arXiv