PyDicer: An open-source python']python library for conversion and analysis of radiotherapy DICOM data

被引:2
作者
Chlap, Phillip [1 ,2 ,3 ,7 ]
Al Mouiee, Daniel [1 ,2 ,3 ]
Finnegan, Robert N. [4 ,5 ]
Cui, Janet [2 ,8 ]
Chin, Vicky [1 ,2 ,3 ,6 ]
Deshpande, Shrikant [1 ,2 ,3 ]
Holloway, Lois [1 ,2 ,3 ,5 ]
机构
[1] Univ New South Wales, South Western Sydney Clin Sch, Sydney, Australia
[2] Ingham Inst Appl Med Res, Sydney, Australia
[3] Liverpool & Macarthur Canc Therapy Ctr, Dept Radiat Oncol, Sydney, Australia
[4] Royal North Shore Hosp, Sydney, Australia
[5] Univ Sydney, Inst Med Phys, Sydney, Australia
[6] Univ Sydney, Image X Inst, Sydney, Australia
[7] Radformation Inc, New York, NY 10016 USA
[8] Microsoft, Sydney, Australia
关键词
Radiotherapy; Medical image analysis; DICOM; NIfTI; Radiomics; Auto-segmentation;
D O I
10.1016/j.softx.2024.102010
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The organisation, conversion, cleaning and processing of DICOM data is an ongoing challenge across medical image analysis research projects. PyDicer (PYthon Dicom Image ConvertER) was created as a generalisable tool for use across a variety of radiotherapy research projects. This includes the conversion of DICOM objects into a standardised form as well as functionality to visualise, clean and analyse the converted data. The generalisability of PyDicer has been demonstrated by its use across a range of projects including the analysis of radiotherapy dose metrics and radiomics features as well as auto-segmentation training, inference and validation.
引用
收藏
页数:8
相关论文
共 38 条
[1]   Simple Python']Python Module for Conversions Between DICOM Images and Radiation Therapy Structures, Masks, and Prediction Arrays [J].
Anderson, Brian M. ;
Wahid, Kareem A. ;
Brock, Kristy K. .
PRACTICAL RADIATION ONCOLOGY, 2021, 11 (03) :226-229
[2]  
[Anonymous], [56] [Online]. Available: https://framevr.io/
[3]   Potential anatomical triggers for plan adaptation of cervical cancer external beam radiotherapy [J].
Brown, Rhianna ;
Holloway, Lois ;
Lau, Annie ;
Lim, Karen ;
Moodaley, Pereshin ;
Metcalfe, Peter ;
Do, Viet ;
Cutajar, Dean ;
Walker, Amy .
PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2024, 47 (04) :1593-1602
[4]   Advances in Auto-Segmentation [J].
Cardenas, Carlos E. ;
Yang, Jinzhong ;
Anderson, Brian M. ;
Court, Laurence E. ;
Brock, Kristy B. .
SEMINARS IN RADIATION ONCOLOGY, 2019, 29 (03) :185-197
[5]  
Cardoso M, 2024, RADIOTHER ONCOL, V194, pS2343
[6]   Dosimetric Impact of Delineation and Motion Uncertainties on the Heart and Substructures in Lung Cancer Radiotherapy [J].
Chin, V. ;
Finnegan, R. N. ;
Chlap, P. ;
Holloway, L. ;
Thwaites, D. I. ;
Otton, J. ;
Delaney, G. P. ;
Vinod, S. K. .
CLINICAL ONCOLOGY, 2024, 36 (07) :420-429
[7]  
Chin V, 2023, RADIOTHER ONCOL, V182, pS119
[8]   Validation of a Fully Automated Hybrid Deep Learning Cardiac Substructure Segmentation Tool for Contouring and Dose Evaluation in Lung Cancer Radiotherapy [J].
Chin, V. ;
Finnegan, R. N. ;
Chlapy, P. ;
Otton, J. ;
Haidar, A. ;
Holloway, L. ;
Thwaites, D. I. ;
Dowling, J. ;
Delaney, G. P. ;
Vinod, S. K. .
CLINICAL ONCOLOGY, 2023, 35 (06) :370-381
[9]  
Chlap P., 2023, J Open Source Softw, V8, P5374, DOI [10.21105/joss.05374, DOI 10.21105/JOSS.05374]
[10]  
Chlap Phillip, 2024, Zenodo, DOI 10.5281/ZENODO.10472455