High-precision machine learning for predicting latent heat in diverse multicomponent molten salts

被引:0
作者
Wang, Xue-meng [1 ,2 ,3 ]
Tao, Yi-dan [1 ,2 ,3 ]
Dong, Guan-chen [1 ,2 ]
Wang, Shuai-yu [1 ,2 ]
Miao, Qi [1 ,2 ,3 ]
Ding, Hong-liang [3 ]
Lv, Jing [1 ,2 ]
Wu, Qiong [1 ,2 ,4 ]
Jin, Yi [3 ]
Tan, Ling-hua [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Chem & Chem Engn, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, Natl Special Superfine Powder Engn Res Ctr, Nanjing 210014, Peoples R China
[3] Nanjing Jinhe Energy Mat Co Ltd, Nanjing 210047, Jiangsu, Peoples R China
[4] Nanjing Inst Technol, Sch Mat Sci & Engn, Jiangsu Key Lab Adv Struct Mat & Applicat Technol, Nanjing 211167, Peoples R China
关键词
Phase change materials; Molten salts; Artificial neural network; Optimization algorithm; Latent heat; Wide-range prediction; THERMOPHYSICAL PROPERTIES;
D O I
10.1016/j.solmat.2024.113328
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Molten salts in phase change materials offer significant advantages, including high thermal storage density, a wide operational temperature range, and low cost. However, the development of novel high-latent-heat molten salts remains largely empirical. Machine learning offers the potential to expedite theoretical advancements and enable precise, cost-efficient performance predictions. Nonetheless, the diversity of molten salt s complicates the accuracy and generalizability of machine learning models. This study proposes a novel latent heat prediction methodology that integrates data analysis and machine learning. A comprehensive dataset encompassing various inorganic salts was systematically analyzed to extract key features influencing latent heat. Subsequently, a predictive model was constructed by combining a backpropagation neural network (BPNN) with particle swarm optimization (PSO). The PSO-BPNN model demonstrated high predictive accuracy, achieving R2 values of 0.9389 and 0.9413 for binary and ternary molten salts, respectively, with experimental validation indicating prediction errors within 10 %. This approach establishes a high-precision, scalable framework for predicting the latent heat of multicomponent molten salts, thereby advancing the design of salts with tailored thermal properties and offering a valuable reference for predicting other thermophysical characteristics.
引用
收藏
页数:7
相关论文
共 30 条
  • [1] Predicting thermophysical properties enhancement of metal-based phase change materials using various machine learning algorithms
    Bakouri, Mohsen
    Sultan, Hakim S.
    Samad, Sarminah
    Togun, Hussein
    Goodarzi, Marjan
    [J]. JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2023, 148
  • [2] FactSage thermochemical software and databases - recent developments
    Bale, C. W.
    Belisle, E.
    Chartrand, P.
    Decterov, S. A.
    Eriksson, G.
    Hack, K.
    Jung, I. -H.
    Kang, Y. -B.
    Melancon, J.
    Pelton, A. D.
    Robelin, C.
    Petersen, S.
    [J]. CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2009, 33 (02): : 295 - 311
  • [3] First-principles molecular dynamics modeling of the LiCl-KCl molten salt system
    Bengtson, Amelia
    Nam, Hyo On
    Saha, Saumitra
    Sakidja, Ridwan
    Morgan, Dane
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2014, 83 : 362 - 370
  • [4] Dinov IvoD., 2018, DATA SCI PREDICTIVE, DOI 10.1007/978-3-319-72347-1
  • [5] Determination of optimal compositions and properties for phase change materials in a solar electric generating station
    Gheribi, Aimen E.
    Pelton, Arthur D.
    Harvey, Jean-Philippe
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 210
  • [6] Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review
    Jayathunga, D. S.
    Karunathilake, H. P.
    Narayana, M.
    Witharana, S.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 189
  • [7] Evaluation and selection of eutectic salts combined with metal foams for applications in high-temperature latent heat thermal energy storage
    Kim, Hansol
    Seo, Joseph
    Hassan, Yassin A.
    Yoo, Junsoo
    Qin, Sunming
    Hartvigsen, Jeremy L.
    [J]. JOURNAL OF ENERGY STORAGE, 2024, 76
  • [8] Experimental Investigation of Nano-encapsulated Molten Salt for Medium-Temperature Thermal Storage Systems and Modeling of Neural Networks
    Kumar, K. Ravi
    Balasubramanian, K. R.
    Kumar, G. Pramod
    Kumar, C. Bharat
    Cheepu, Murali Mohan
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2022, 43 (09)
  • [9] Salt hydrate-based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives
    Li, Wei
    Klemes, Jiri Jaromir
    Wang, Qiuwang
    Zeng, Min
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 154
  • [10] High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review
    Liu, Yang
    Zheng, Ruowei
    Li, Ji
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 168