Machine learning models for prediction of nutrient concentrations in surface water in an agricultural watershed

被引:1
|
作者
Elsayed, Ahmed [1 ,2 ]
Rixon, Sarah [1 ]
Levison, Jana [1 ]
Binns, Andrew [1 ]
Goel, Pradeep [3 ]
机构
[1] Univ Guelph, Morwick G360 Groundwater Res Inst, Sch Engn, Guelph, ON, Canada
[2] Cairo Univ, Fac Engn, Irrigat & Hydraul Dept, Giza, Egypt
[3] Minist Environm Conservat & Pk, Etobicoke, ON, Canada
关键词
Machine learning algorithms; Nutrient concentrations; Surface water; Water quality; Agricultural watershed; Model predictions; SUPPORT VECTOR REGRESSION; ARTIFICIAL NEURAL-NETWORK; LAND-USE CHANGES; LOGISTIC-REGRESSION; QUALITY INDEX; CLASSIFICATION; SCALE; CHALLENGES; POLLUTION; IMPACTS;
D O I
10.1016/j.jenvman.2024.123305
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Prediction and quantification of nutrient concentrations in surface water has gained substantial attention during recent decades because excess nutrients released from agricultural and urban watersheds can significantly deteriorate surface water quality. Machine learning (ML) models are considered an effective tool for better understanding and characterization of nutrient release from agricultural fields to surface water. However, to date, no systematic investigations have examined the implementation of different classification and regression ML models in agricultural settings to predict nutrient concentrations in surface water using a group of input variables including climatological (e.g., precipitation), hydrological (e.g., stream flow) and field characteristics (i.e., land and crop use). In the current study, multiple classification (e.g., decision trees) and regression (e.g., regression trees) ML models were applied on a dataset pertaining to surface water quality in an agricultural watershed in southern Ontario, Canada (i.e., Upper Parkhill watershed). The target variables of these models were the nutrient concentrations in surface water including nitrate, total phosphorus, soluble reactive phosphorus, and total dissolved phosphorus. These target variables were predicted using physical and chemical water parameters of surface water (e.g., temperature and DO), climatological, hydrological, and field conditions as the input variables. The performance of these different models was assessed using various evaluation metrics such as classification accuracy (CA) and coefficient of determination (R-2) for classification and regression models, respectively. In general, both the ensemble bagged trees and logistic regression (CA >= 0.72), and exponential Gaussian process regression (R-2 >= 0.93) models were the optimal classification and regression ML algorithms, respectively, where they resulted in the highest prediction accuracy of the target variables. The insights and outcomes of the current study demonstrates that ML models can be employed to effectively predict and quantify the nutrient concentrations in surface waters to supplement field-collected monitoring data in agricultural watersheds, assisting in maintaining high quality of the available surface water resources.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Hybrid machine learning model for hourly ozone concentrations prediction and exposure risk assessment
    Lingxia, Wu
    Qijie, Zhang
    Jie, Li
    Junlin, An
    ATMOSPHERIC POLLUTION RESEARCH, 2023, 14 (11)
  • [42] Surface water quality monitoring of an agricultural watershed for nonpoint source pollution control
    Poudel, D. D.
    JOURNAL OF SOIL AND WATER CONSERVATION, 2016, 71 (04) : 310 - 326
  • [43] Enhancing water quality prediction: a machine learning approach across diverse water environments
    Peerzade, Sabanaz
    Kamat, Pooja
    WATER QUALITY RESEARCH JOURNAL, 2025, 60 (01) : 298 - 317
  • [44] A novel machine learning application: Water quality resilience prediction Model
    Imani, Maryam
    Hasan, Md Mahmudul
    Bittencourt, Luiz Fernando
    McClymont, Kent
    Kapelan, Zoran
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 768
  • [45] Simulation and prediction of surface water quality using stochastic models
    Dastorani, Mostafa
    Mirzavand, Mohammad
    Dastorani, Mohammad T.
    Khosravi, Hassan
    SUSTAINABLE WATER RESOURCES MANAGEMENT, 2020, 6 (04)
  • [46] Assessing the impact of rainfall, topography, and human disturbances on nutrient levels using integrated machine learning and GAMs models in the Choctawhatchee River Watershed
    Fang, Shubo
    Deitch, Matthew J.
    Gebremicael, Tesfay G.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2025, 375
  • [47] Reconstruction of Monthly Surface Nutrient Concentrations in the Yellow and Bohai Seas from 2003-2019 Using Machine Learning
    Liu, Hao
    Lin, Lei
    Wang, Yujue
    Du, Libin
    Wang, Shengli
    Zhou, Peng
    Yu, Yang
    Gong, Xiang
    Lu, Xiushan
    REMOTE SENSING, 2022, 14 (19)
  • [48] Water consumption prediction based on machine learning methods and public data
    Kesornsit, Witwisit
    Sirisathitkul, Yaowarat
    ADVANCES IN COMPUTATIONAL DESIGN, AN INTERNATIONAL JOURNAL, 2022, 7 (02): : 113 - 128
  • [49] Machine Learning Models for Early Dengue Severity Prediction
    Caicedo-Torres, William
    Paternina, Angel
    Pinzon, Hernando
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2016, 2016, 10022 : 247 - 258
  • [50] Machine Learning Models for Customer Churn Risk Prediction
    Akan, Oguzhan
    Verma, Abhishek
    2022 IEEE 13TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2022, : 623 - 628