Structure-sensitive scaling relations among carbon-containing species and their possible impact on CO2 electroreduction

被引:10
作者
Kolb M.J. [1 ]
Loffreda D. [2 ]
Sautet P. [3 ]
Calle-Vallejo F. [1 ]
机构
[1] Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, Barcelona
[2] Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Lyon
[3] Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, 90095, CA
关键词
Catalyst design; CO[!sub]2[!/sub] electroreduction; Computational electrocatalysis; Scaling relations; Structural sensitivity;
D O I
10.1016/j.jcat.2020.12.026
中图分类号
学科分类号
摘要
The arduous modelling of reactions at heterogeneous catalysts is greatly simplified when adsorption-energy scaling relations between intermediates exist. Generally, the offset of these linear relations is structure-independent when the slope is unity and otherwise depends on the coordination number of the active sites. Here we examine the adsorption of *C, *CH, *CH2, *CH3 and *COH on five different surface sites of nine transition metals to establish their structure-sensitive scaling relations. Interestingly, we show that the scaling relations of *C (valency 4) and C-containing species with valency 3 (*CH, *COH) have peculiar structure-independent offsets. These offsets stem from the analogous bonding of those species to the adsorption sites, in spite of their dissimilar valency. We show how this result implies that reaction pathways in catalysis involving *C, *CH and *COH, for instance CO2 electroreduction to CH4, will usually have sizable thermodynamic limits imposed to their optimization. © 2021 Elsevier Inc.
引用
收藏
页码:136 / 142
页数:6
相关论文
共 56 条
  • [1] Jackson R.B., Friedlingstein P., Andrew R.M., Canadell J.G., le Quere C., Peters G.P., Persistent fossil fuel growth threatens the Paris Agreement and planetary health, Environ. Res. Lett., 14, (2019)
  • [2] le Quere C., Jackson R.B., Jones M.W., Smith A.J.P., Abernethy S., Andrew R.M., De-Gol A.J., Willis D.R., Shan Y., Canadell J.G., Friedlingstein P., Creutzig F., Peters G.P., Temporary reduction in daily global CO<sub>2</sub> emissions during the COVID-19 forced confinement, Nat. Clim. Change, 10, pp. 647-653, (2020)
  • [3] Benhelal E., Zahedi G., Shamsaei E., Bahadori A., Global strategies and potentials to curb CO<sub>2</sub> emissions in cement industry, J. Cleaner Prod., 51, pp. 142-161, (2013)
  • [4] Turnbull J.C., Keller E.D., Norris M.W., Wiltshire R.M., Independent evaluation of point source fossil fuel CO<sub>2</sub> emissions to better than 10%, Proc. Natl. Acad. Sci., 113, pp. 10287-10291, (2016)
  • [5] Studt F., Behrens M., Kunkes E.L., Thomas N., Zander S., Tarasov A., Schumann J., Frei E., Varley J.B., Abild-Pedersen F., Norskov J.K., Schlogl R., The mechanism of CO and CO<sub>2</sub> hydrogenation to methanol over Cu-based catalyst, ChemCatChem, 7, pp. 1105-1111, (2015)
  • [6] Hu B., Guild C., Suib S.L., Thermal, electrochemical, and photochemical conversion of CO<sub>2</sub> to fuels and value-added products, Utilization, 1, pp. 18-27, (2013)
  • [7] Mustafa A., Lougou B.G., Shuai Y., Wang Z., Tan H., Current technology development for CO<sub>2</sub> utilization into solar fuels and chemicals: A review, J. Energy Chem., 49, pp. 96-123, (2020)
  • [8] Bushuyev O.S., de Luna P., Dinh C.T., Tao L., Saur G., van de Lagemaat J., Kelley S.O., Sargent E.H., What Should We Make with CO<sub>2</sub> and How Can We Make It?, Joule, 2, pp. 825-832, (2018)
  • [9] Seh Z.W., Kibsgaard J., Dickens C.F., Chorkendorff I., Norskov J.K., Jaramillo T.F., Combining theory and experiment in electrocatalysis: Insights into materials design, Science, 355, (2017)
  • [10] Larrazabal G.O., Martin A.J., Perez-Ramirez J., Building Blocks for High Performance in Electrocatalytic CO<sub>2</sub> Reduction: Materials, Optimization Strategies, and Device Engineering, J. Phys. Chem. Lett., 8, pp. 3933-3944, (2017)