Spectral model for soybean yield estimate using MODIS/EVI data

被引:15
作者
机构
[1] Environmental Engineering, UNISINOS, São Leopoldo
[2] Remote Sensing Center and Astronomy Department, UFRGS, Porto Alegre
[3] Graduate Program in Geology, UNISINOS, São Leopoldo
[4] Institut de Recherche Pour le Développement (IRD), Montpellier
[5] Graduate Program in Applied Computing, UNISINOS, São Leopoldo
来源
Gusso, Anibal (anibalg@unisinos.br) | 1600年 / Springer Verlag卷 / 04期
关键词
Coupled Model; Forecast; Remote Sensing; Satellite Images; Soy Yield;
D O I
10.4236/ijg.2013.49117
中图分类号
学科分类号
摘要
Attaining reliable and timely agricultural estimates is very important everywhere, and in Brazil, due to its characteristics, this is especially true. In this study, estimations of crop production were made based on the temporal profiles of the Enhanced Vegetation Index (EVI) obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) images. The objective was to evaluate the coupled model (CM) performance of crop area and crop yield estimates based solely on MODIS/EVI as input data in Rio Grande do Sul State, which is characterized by high variability in seasonal soybean yields, due to different crop development conditions. The resulting production estimates from CM were compared to official agricultural statistics of Brazilian Institute of Geography and Statistics (IBGE) and the National Company of Food Supply (CONAB) at different levels from 2000/2001 to 2010/2011 crop years. Results obtained with CM indicate that its application is able to generate timely production estimates for soybean both at municipality and local levels. Validation estimates with CM at State level obtained R2 = 0.95. Combining all cropping years at municipality level, estimates were highly correlated to official statistics from IBGE, with R2 = 0.91 and RMSD = 10,840 tons. Spatially interpolated comparisons of yield maps obtained from the CM estimates and IBGE data also showed visual similarity in their spatial distribution. Local level comparisons were performed and presented R2 = 0.95. Implications of this work point out that time-series analysis of production estimates are able to provide anticipated spatial information prior to the soybean harvest. © 2013 Anibal Gusso et al.
引用
收藏
页码:1233 / 1241
页数:8
相关论文
共 44 条
  • [1] Gusso A., Integração de imagens NOAA/AVHRR: Rede de Cooperação Para Monitoramento Nacional da Safra de Soja, Revista Ceres, 60, 2, pp. 194-204, (2013)
  • [2] Figueiredo D.C., Projeto GeoSafras: Aperfeiçoamento do Sistema de Previsão de Safras da Conab, Revista De Política Agrícola, 14, pp. 110-120, (2005)
  • [3] Gusso A., Formaggio A.R., Rizzi R., Adami M., Rudorff B.T., Soybean Crop Area Estimation by MODIS/ EVI Data, Pesquisa Agropecuária Brasileira, 47, 3, pp. 425-435, (2012)
  • [4] Johann J.A., Rocha J.V., Duft D.G., Lamparelli R.A., Estimativa de Áreas com Culturas de Verão no Paraná, por Meio de Imagens Multitemporais EVI/Modis, Pesquisa Agropecuária Brasileira, 47, 9, pp. 1295-1306, (2012)
  • [5] Rizzi R., Rudorff B.T., Imagens do Sensor MODIS Associadas a um Modelo Agronômicopara Estimar a Produtividade de Soja, Pesquisa Agropecuária Brasileira, 42, 1, pp. 73-80, (2007)
  • [6] Assad E.D., Marin F.R., Evangelista S.R., Pilau F.G., Farias J.R., Pintoand H.S., Zullo J., Sistema de Previsão da Safra de Soja para o Brasil, Pesquisa Agropecuária Brasileira, 42, 5, pp. 615-625, (2007)
  • [7] Sano E.E., Ferreira L.G., Asner G.P., Steinke E.T., Spatial and Temporal Probabilities of Obtaining Cloud- Free Landsat Images over the Brazilian Tropical Savanna, International Journal of Remote Sensing, 28, 12, pp. 2739-2752, (2007)
  • [8] Sugawara L.M., Rudorff B.F., Adami M., Viabilidade de Uso de Imagens do Landsat em Mapeamento de área Cultivada com Soja no Estado do Paraná, Pesquisa Agropecuária Brasileira, 43, 12, pp. 1763-1768, (2008)
  • [9] Esquerdo J., Zullo J., Antunes J.F., Use of NDVI/AVHRR Time-Series Profiles for Soybean Crop Monitoring in Brazil, International Journal of Remote Sensing, 32, 13, pp. 3711-3727, (2011)
  • [10] De Melo R.W., Fontana D.C., Berlato M.A., Ducati J.R., An Agrometeorologica-Spectral Model to Estimate Soybean Yield, Applied to Southern Brazil, International Journal of Remote Sensing, 29, 14, pp. 4013-4028, (2008)