Single-atom spintronics

被引:0
|
作者
Hua, Susan Z. [1 ]
Sullivan, Matthew R. [1 ]
Armstrong, Jason N. [1 ]
机构
[1] Materials Program, Mechanical and Aerospace Engineering Department, State University of New York at Buffalo, Buffalo, NY 14260, United States
关键词
Domain walls - Magnetic domains - Magnetoresistance - Point contacts - Probability;
D O I
暂无
中图分类号
学科分类号
摘要
Recent work on magnetic quantum point contacts (QPCs) was discussed. Complete magnetoresistance loops across Co QPCs as small as a single atom was measured. The remarkable feature of these QPCs is the rapid oscillatory decay in magnetoresistance with the increase of contact size. In addition, stepwise or quantum magnetoresistance loops are observed, resulting from varying transmission probability of the available discrete conductance channels because the sample is cycled between the ferromagnetic (F) and antiferromagnetic (AF) aligned states. Quantized conductance combined with spin dependent transmission of electron waves gives rise to a multi-channel system with a quantum domain wall acting as a valve, i.e., a quantum spin-valve. Behavior of a few-atom QPC is built on the behavior of a single-atom QPC and hence the summarization of results as 'single-atom spintronics'. An evolutionary trace of spin-dependent electron transmission from a single atom to bulk is provided, the requisite hallmarks of artefact-free magnetoresistance is established across a QPC-stepwise or quantum magnetoresistance loops and size dependent oscillatory magnetoresistance.
引用
收藏
页码:146 / 153
相关论文
共 50 条
  • [21] Atomic Configuration and Conductance of Tantalum Single-Atom Contacts and Single-Atom Wires
    Kizuka, Tokushi
    Murata, Satoshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2017, 86 (09)
  • [22] Single-Atom Alloy Catalysis
    Hannagan, Ryan T.
    Giannakakis, Georgios
    Flytzani-Stephanopoulos, Maria
    Sykes, E. Charles H.
    CHEMICAL REVIEWS, 2020, 120 (21) : 12044 - 12088
  • [23] Applications of single-atom catalysts
    Qiaoqiao Zhang
    Jingqi Guan
    Nano Research, 2022, 15 : 38 - 70
  • [24] Single-atom conductance of Y
    Parveen, Nadia
    Ishino, Yuji
    Kurokawa, Shu
    Sakai, Akira
    PHYSICA B-CONDENSED MATTER, 2016, 488 : 57 - 61
  • [25] Single-atom transistor for light
    Scott Parkins
    Nature, 2010, 465 : 699 - 700
  • [26] A single-atom quantum memory
    Specht, Holger P.
    Nolleke, Christian
    Reiserer, Andreas
    Uphoff, Manuel
    Figueroa, Eden
    Ritter, Stephan
    Rempe, Gerhard
    NATURE, 2011, 473 (7346) : 190 - 193
  • [27] SINGLE-ATOM OPTICAL BISTABILITY
    SAVAGE, CM
    CARMICHAEL, HJ
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1988, 24 (08) : 1495 - 1498
  • [28] A single-atom heat engine
    Ronagel, Johannes
    Dawkins, Samuel T.
    Tolazzi, Karl N.
    Abah, Obinna
    Lutz, Eric
    Schmidt-Kaler, Ferdinand
    Singer, Kilian
    SCIENCE, 2016, 352 (6283) : 325 - 329
  • [29] Modeling Single-Atom Catalysis
    Di Liberto, Giovanni
    Pacchioni, Gianfranco
    ADVANCED MATERIALS, 2023, 35 (46)
  • [30] A Nanoelectromechanical Single-Atom Switch
    Martin, Christian A.
    Smit, Roel H. M.
    van der Zant, Herre S. J.
    van Ruitenbeek, Jan M.
    NANO LETTERS, 2009, 9 (08) : 2940 - 2945