DGTNet:dynamic graph attention transformer network for traffic flow forecasting

被引:0
|
作者
Chen, Jing [1 ]
Li, Wuzhi [1 ]
Chen, Shuixuan [1 ]
Zhang, Guowei [1 ]
机构
[1] Xiamen Univ Technol, Sch Mech & Automot Engn, 600 Ligong Rd, Xiamen 361024, Fujian, Peoples R China
来源
ENGINEERING RESEARCH EXPRESS | 2024年 / 6卷 / 04期
关键词
traffic flow prediction; dynamic graph; adaptive signal decomposition; transformer;
D O I
10.1088/2631-8695/ad9238
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Graph-based traffic flow prediction plays a crucial role in urban traffic management and planning. In this paper, we propose a novel Dynamic Graph Attention Transformer Network (DGTNet), which is designed to address the issue of inadequate integration of temporal and spatial dimensions in traditional models. DGTNet maintains temporal continuity while revealing the complex dynamic relationships between key nodes in the urban traffic system, capturing the periodic changes in the rhythm of city life. Specifically, this study adopts adaptive signal decomposition technology to decompose traffic data into multiple Intrinsic Mode Functions (IMFs), effectively capturing the dynamic changes in traffic flow. This decomposition method is key to the implementation of DGTNet's dynamic graph construction, enabling the analysis of traffic flow at different time scales, thereby providing a new perspective for traffic flow prediction research. In the traffic prediction module, we comprehensively consider node, edge, and graph structural information, adopting a multi-head self-attention mechanism to achieve direct cross-modeling in both temporal and spatial dimensions. Finally, we introduce a position-wise feedforward network layer to integrate different types of data and capture nonlinear relationships. The experimental results, based on public transportation network datasets METR_LA, PEMS_BAY, PEMS03, and PEMS07, demonstrate that DGTNet exhibits notable enhancements in three evaluation indicators, namely the Mean Absolute Percentage Error (MAPE), the Root Mean Square Error (RMSE), and the Mean Absolute Error (MAE). The pertinent code has been made available for public access at https://github.com/chenjing0616/DGTNet.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] An improved dynamic Chebyshev graph convolution network for traffic flow prediction with spatial-temporal attention
    Lyuchao Liao
    Zhiyuan Hu
    Yuxin Zheng
    Shuoben Bi
    Fumin Zou
    Huai Qiu
    Maolin Zhang
    Applied Intelligence, 2022, 52 : 16104 - 16116
  • [32] Research on Traffic Flow Forecasting Method Based on Graph Neural Network
    Xiao Wenjuan
    Liu Jianfeng
    2022 2ND IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE (SEAI 2022), 2022, : 243 - 247
  • [33] An improved dynamic Chebyshev graph convolution network for traffic flow prediction with spatial-temporal attention
    Liao, Lyuchao
    Hu, Zhiyuan
    Zheng, Yuxin
    Bi, Shuoben
    Zou, Fumin
    Qiu, Huai
    Zhang, Maolin
    APPLIED INTELLIGENCE, 2022, 52 (14) : 16104 - 16116
  • [34] Dynamic Spatio-temporal traffic flow prediction based on multi fusion graph attention network
    Cheng, Manru
    Jiang, Guo-Ping
    Song, Yurong
    Yang, Chen
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7285 - 7291
  • [35] Gated Recurrent Graph Convolutional Attention Network for Traffic Flow Prediction
    Feng, Xiaoyuan
    Chen, Yue
    Li, Hongbo
    Ma, Tian
    Ren, Yilong
    SUSTAINABILITY, 2023, 15 (09)
  • [36] Transformer network with decoupled spatial-temporal embedding for traffic flow forecasting
    Sun, Wei
    Cheng, Rongzhang
    Jiao, Yingqi
    Gao, Junbo
    Zheng, Zhedian
    Lu, Nan
    APPLIED INTELLIGENCE, 2023, 53 (24) : 30148 - 30168
  • [37] Routeformer:Transformer utilizing routing mechanism for traffic flow forecasting
    Qi, Jun
    Fan, Hong
    NEUROCOMPUTING, 2025, 633
  • [38] Traffic flow matrix-based graph neural network with attention mechanism for traffic flow prediction
    Chen, Jian
    Zheng, Li
    Hu, Yuzhu
    Wang, Wei
    Zhang, Hongxing
    Hu, Xiping
    INFORMATION FUSION, 2024, 104
  • [39] Spatiotemporal interactive learning dynamic adaptive graph convolutional network for traffic forecasting
    Jiang, Feng
    Han, Xingyu
    Wen, Shiping
    Tian, Tianhai
    KNOWLEDGE-BASED SYSTEMS, 2025, 311
  • [40] Efficient Adaptive Spatial-Temporal Attention Network for Traffic Flow Forecasting
    Su, Hongyang
    Wang, Xiaolong
    Chen, Qingcai
    Qin, Yang
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT V, 2023, 14173 : 205 - 220