Speech Emotion Recognition via Sparse Learning-Based Fusion Model

被引:0
作者
Min, Dong-Jin [1 ]
Kim, Deok-Hwan [1 ]
机构
[1] Inha Univ, Dept Elect & Comp Engn, Incheon 22212, South Korea
来源
IEEE ACCESS | 2024年 / 12卷
基金
新加坡国家研究基金会;
关键词
Emotion recognition; Speech recognition; Hidden Markov models; Feature extraction; Brain modeling; Accuracy; Convolutional neural networks; Data models; Time-domain analysis; Deep learning; 2D convolutional neural network squeeze and excitation network; multivariate long short-term memory-fully convolutional network; late fusion; sparse learning; FEATURES; DATABASES; ATTENTION; NETWORK;
D O I
10.1109/ACCESS.2024.3506565
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Speech communication is a powerful tool for conveying intentions and emotions, fostering mutual understanding, and strengthening relationships. In the realm of natural human-computer interaction, speech-emotion recognition plays a crucial role. This process involves three stages: dataset collection, feature extraction, and emotion classification. Collecting speech-emotion recognition datasets is a complex and costly process, leading to limited data volumes and uneven emotional distributions. This scarcity and imbalance pose significant challenges, affecting the accuracy and reliability of emotion recognition. To address these issues, this study introduces a novel model that is more robust and adaptive. We employ the Ranking Magnitude Method (RMM) based on sparse learning. We use the Root Mean Square (RMS) energy and Zero Crossing Rate (ZCR) as temporal features to measure the speech's overall volume and noise intensity. The Mel Frequency Cepstral Coefficient (MFCC) is utilized to extract critical speech features, which are then integrated into a multivariate Long Short-Term Memory-Fully Convolutional Network (LSTM-FCN) model. We analyze the utterance levels using the log-Mel spectrogram for spatial features, processing these patterns through a 2D Convolutional Neural Network Squeeze and Excitation Network (CNN-SEN) model. The core of our method is a Sparse Learning-Based Fusion Model (SLBF), which addresses dataset imbalances by selectively retraining the underperforming nodes. This dynamic adjustment of learning priorities significantly enhances the robustness and accuracy of emotion recognition. Using this approach, our model outperforms state-of-the-art methods for various datasets, achieving impressive accuracy rates of 97.18%, 97.92%, 99.31%, and 96.89% for the EMOVO, RAVDESS, SAVE, and EMO-DB datasets, respectively.
引用
收藏
页码:177219 / 177235
页数:17
相关论文
共 58 条
[1]   An ensemble 1D-CNN-LSTM-GRU model with data augmentation for speech emotion recognition [J].
Ahmed, Md. Rayhan ;
Islam, Salekul ;
Islam, A. K. M. Muzahidul ;
Shatabda, Swakkhar .
EXPERT SYSTEMS WITH APPLICATIONS, 2023, 218
[2]   Speech emotion recognition: Emotional models, databases, features, preprocessing methods, supporting modalities, and classifiers [J].
Akcay, Mehmet Berkehan ;
Oguz, Kaya .
SPEECH COMMUNICATION, 2020, 116 (116) :56-76
[3]   Data augmentation for speech separation [J].
Alex, Ashish ;
Wang, Lin ;
Gastaldo, Paolo ;
Cavallaro, Andrea .
SPEECH COMMUNICATION, 2023, 152
[4]  
Burkhardt F., 2005, 9 EUROPEAN C SPEECH
[5]   A survey on facial emotion recognition techniques: A state-of-the-art literature review [J].
Canal, Felipe Zago ;
Mueller, Tobias Rossi ;
Matias, Jhennifer Cristine ;
Scotton, Gustavo Gino ;
de Sa, Antonio Reis ;
Pozzebon, Eliane ;
Sobieranski, Antonio Carlos .
INFORMATION SCIENCES, 2022, 582 :593-617
[6]   CREMA-D: Crowd-Sourced Emotional Multimodal Actors Dataset [J].
Cao, Houwei ;
Cooper, David G. ;
Keutmann, Michael K. ;
Gur, Ruben C. ;
Nenkova, Ani ;
Verma, Ragini .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2014, 5 (04) :377-390
[7]   Vesper: A Compact and Effective Pretrained Model for Speech Emotion Recognition [J].
Chen, Weidong ;
Xing, Xiaofen ;
Chen, Peihao ;
Xu, Xiangmin .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2024, 15 (03) :1711-1724
[8]  
Chernykh V, 2018, Arxiv, DOI arXiv:1701.08071
[9]   Emotion, cognition, and behavior [J].
Dolan, RJ .
SCIENCE, 2002, 298 (5596) :1191-1194
[10]   Survey on speech emotion recognition: Features, classification schemes, and databases [J].
El Ayadi, Moataz ;
Kamel, Mohamed S. ;
Karray, Fakhri .
PATTERN RECOGNITION, 2011, 44 (03) :572-587