Interlayer coupling induced extended state in a localized continuum of non-Hermitian topolectrical circuits

被引:2
|
作者
Ruan, Banxian [1 ]
Dai, Xiaoyu [2 ]
Xiang, Yuanjiang [1 ]
机构
[1] Hunan Univ, Sch Phys & Elect, Changsha 410082, Peoples R China
[2] Hunan Univ, Sch Elect & Informat Engn, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
PHOTONIC BOUND-STATES;
D O I
10.1103/PhysRevB.110.235102
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bound states in the continuum (BICs) are spatially localized states whose eigenvalues are situated within the continuum of extended states. Recent research has demonstrated that the interaction between BICs and the non-Hermitian skin effect (NHSE) can give rise to an extended state in a localized continuum (ELC), which is essentially the inverse of the BICs. Here, we propose and experimentally demonstrate a very general and simple approach for the generation of the ELC in a mirror-stacking system. This approach allows the Hamiltonian of the bilayer system to be decoupled into two topological subspaces. Upon tuning the interlayer coupling, the BICs are realized when the topological bound states spectrally overlap with the bulk band. The ELC arises with the introduction of the NHSE, which not only transforms all bulk modes into skin modes but also concurrently delocalizes the bound state. As a representative example, we experimentally realize the ELC in a mirror-stacked non-Hermitian Su-Schrieffer-Heeger electric circuit. Our findings are expected to expand the research significance of NHSE and ELCs.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Extended state reshaping in non-Hermitian topolectrical circuits
    Liu, Chao
    Ruan, Banxian
    Hu, Weipeng
    Lin, Wei
    Dai, Xiaoyu
    Wu, Jien
    Jiang, Leyong
    Xiang, Yuanjiang
    PHYSICAL REVIEW APPLIED, 2024, 21 (05):
  • [2] Evolution of topological extended state in multidimensional non-Hermitian topolectrical circuits
    Lin, Wei
    Ruan, Banxian
    Liu, Chao
    Dai, Xiaoyu
    Xiang, Yuanjiang
    APPLIED PHYSICS LETTERS, 2024, 125 (17)
  • [3] Deep learning for the design of non-Hermitian topolectrical circuits
    Chen, Xi
    Sun, Jinyang
    Wang, Xiumei
    Jiang, Hengxuan
    Zhu, Dandan
    Zhou, Xingping
    PHYSICAL REVIEW B, 2024, 109 (09)
  • [4] Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits
    T. Helbig
    T. Hofmann
    S. Imhof
    M. Abdelghany
    T. Kiessling
    L. W. Molenkamp
    C. H. Lee
    A. Szameit
    M. Greiter
    R. Thomale
    Nature Physics, 2020, 16 : 747 - 750
  • [5] Non-Hermitian topological phases and exceptional lines in topolectrical circuits
    Rafi-Ul-Islam, S. M.
    Bin Siu, Zhuo
    Jalil, Mansoor B. A.
    NEW JOURNAL OF PHYSICS, 2021, 23 (03):
  • [6] Energy Localization and Topological Defect in Spherical Non-Hermitian Topolectrical Circuits
    Shen, Xizhou
    Wang, Xiumei
    Guo, Haotian
    Zhou, Xingping
    ANNALEN DER PHYSIK, 2024, 536 (11)
  • [7] Generalized bulk-boundary correspondence in non-Hermitian topolectrical circuits
    Helbig, T.
    Hofmann, T.
    Imhof, S.
    Abdelghany, M.
    Kiessling, T.
    Molenkamp, L. W.
    Lee, C. H.
    Szameit, A.
    Greiter, M.
    Thomale, R.
    NATURE PHYSICS, 2020, 16 (07) : 747 - +
  • [8] Tunable higher-order non-Hermitian skin effect in the SSH topolectrical circuits
    Wang, Lebin
    Lin, Wei
    Ruan, Banxian
    Xiang, Yuanjiang
    Dai, Xiaoyu
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2025, 37 (18)
  • [9] Non-Hermitian interaction of a discrete state with a continuum
    Longhi, Stefano
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2017, 31 (31):
  • [10] Observation of continuum Landau modes in non-Hermitian electric circuits
    Zhang, Xuewei
    Wu, Chaohua
    Yan, Mou
    Liu, Ni
    Wang, Ziyu
    Chen, Gang
    NATURE COMMUNICATIONS, 2024, 15 (01)