GraphSense: a self-aware dynamic graph learning networks for graph data over internet

被引:0
|
作者
Li, Zhi-Yuan [1 ,2 ,3 ]
Zhou, Ying-Yi [1 ]
He, En-Han [1 ]
机构
[1] Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang, Jiangsu, Peoples R China
[2] Jiangsu Ind Network Secur Technol Key Lab, Zhenjiang, Jiangsu, Peoples R China
[3] Jiangsu Prov Engn Res Ctr Ubiquitous Data Intellig, Zhenjiang, Jiangsu, Peoples R China
关键词
Graph neural network; Dynamic graph; Graph representation learning; Network structure learning;
D O I
10.1007/s10489-024-05882-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dynamic graph data learning is an important data analysis technique. In the age of big data, the volume of data produced daily is immense, the data types are varied, the value density is low, and the data continues to accumulate over time. These characteristics make data processing more challenging. In particular, unstructured data, unlike structured data, does not have a fixed format, and its volume is large and variable, which presents a significant challenge to traditional data processing techniques. Nowadays, researchers have been employing graph neural network models to analyze unstructured data. However, real-world graph structures are dynamic and time-varying, and the static graph neural network cannot effectively learn graph node embeddings and network structures. To address the challenges mentioned above, we propose a self-aware dynamic graph network structure learning model, called GraphSense. The algorithm consists of two modules: self-sensing neighborhood aggregation algorithm and dynamic graph structure learning algorithm based on RNN. GraphSense can make each node discover more valuable neighbors through the self-aware neighborhood aggregation algorithm in each epoch. The algorithm employs gated recurrent unit to dynamically aggregate the information of node neighbors to learn the high-order information. Next, in order to capture the temporal properties of graph structures, we employ dynamic graph structure learning algorithm based on RNN to replicate the time evolution process of dynamic graphs. Finally, we evaluate the performance of GraphSense on four publicly available datasets by two specific tasks(edge and node classification). The experimental results show that the proposed GraphSense model outperforms the baseline model by 2.0% to 25.0% on the Elliptic dataset, 2.5% to 27.0% on the Bitcoin-alpha dataset, 3.0% to 31.0% on the Bitcoin-otc dataset, and 0.9% to 26.0% on the Reddit dataset in terms of F1 scores. The results suggest that our model is effective in learning from dynamic graph data.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Relation-aware Graph Contrastive Learning
    Li, Bingshi
    Li, Jin
    Fu, Yang-Geng
    PARALLEL PROCESSING LETTERS, 2023, 33 (01N02)
  • [2] Learning graph normalization for graph neural networks
    Chen, Yihao
    Tang, Xin
    Qi, Xianbiao
    Li, Chun-Guang
    Xiao, Rong
    NEUROCOMPUTING, 2022, 493 : 613 - 625
  • [3] Learning Graph Matching with Graph Neural Networks
    Dobler, Kalvin
    Riesen, Kaspar
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, ANNPR 2024, 2024, 15154 : 3 - 12
  • [4] Regulation-aware graph learning for drug repositioning over network
    Zhao, Bo-Wei
    Su, Xiao-Rui
    Yang, Yue
    Li, Dong-Xu
    Li, Guo-Dong
    Hu, Peng-Wei
    You, Zhu-Hong
    Luo, Xin
    Hu, Lun
    INFORMATION SCIENCES, 2025, 686
  • [5] Critical Structure-aware Graph Neural Networks
    Sun, Qingyun
    PROCEEDINGS OF THE ACM TURING AWARD CELEBRATION CONFERENCE-CHINA 2024, ACM-TURC 2024, 2024, : 228 - 230
  • [6] Graph Geometric Algebra networks for graph representation learning
    Zhong, Jianqi
    Cao, Wenming
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [7] Continuous matching of evolving patterns over dynamic graph data
    Qianzhen Zhang
    Deke Guo
    Xiang Zhao
    Xi Wang
    World Wide Web, 2021, 24 : 721 - 745
  • [8] Continuous matching of evolving patterns over dynamic graph data
    Zhang, Qianzhen
    Guo, Deke
    Zhao, Xiang
    Wang, Xi
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2021, 24 (03): : 721 - 745
  • [9] Context-aware Sampling of Large Networks via Graph Representation Learning
    Zhou, Zhiguang
    Shi, Chen
    Shen, Xilong
    Cai, Lihong
    Wang, Haoxuan
    Liu, Yuhua
    Zhao, Ying
    Chen, Wei
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (02) : 1709 - 1719
  • [10] Graph Contrastive Learning with Constrained Graph Data Augmentation
    Xu, Shaowu
    Wang, Luo
    Jia, Xibin
    NEURAL PROCESSING LETTERS, 2023, 55 (08) : 10705 - 10726