共 15 条
- [1] Stack T., Iot Data continues to explode exponentially. who is using that data and how?, Cisco Blogs, (2020)
- [2] Injadat M., Moubayed A., Shami A., Detecting botnet attacks in IoT environments: An optimized machine learning approach, IEEE-ICM2020, pp. 1-4, (2020)
- [3] Yang L., Et al., Tree-based intelligent intrusion detection system in internet of vehicles, 2019 IEEE Glob. Commun. Conf., pp. 1-6, (2019)
- [4] Cook A.A., Misirli G., Fan Z., Anomaly detection for IoT time-series data: A survey, IEEE Internet Things J., 7, 7, pp. 6481-6494, (2020)
- [5] Ghani N.L.A., Aziz I.A., Mehat M., Concept drift detection on unlabeled data streams: A systematic literature review, 2020 IEEEConference on Big Data and Analytics (ICBDA), pp. 61-65, (2020)
- [6] Lu J., Et al., Learning under concept drift: A review, IEEE Trans. Knowl. Data Eng., 31, 12, pp. 2346-2363, (2019)
- [7] Ullah I., Mahmoud Q.H., A scheme for generating a dataset for anomalous activity detection in IoT networks, Advances in Artifi Cial Intelligence, pp. 508-520, (2020)
- [8] Liu J., Kantarci B., Adams C., Machine learning-driven intrusion detection for contiki-NG-based IoT networks exposed to NSL-KDD dataset, WiseML 2020-Proc. 2nd ACM Work. Wirel. Secur. Mach. Learn., pp. 25-30, (2020)
- [9] Losing V., Hammer B., Wersing H., KNN classifi er with self adjusting memory for heterogeneous concept drift, Proc. IEEE Int. Conf. Data Mining, ICDM, 1, pp. 291-300, (2017)
- [10] Manapragada C., Webb G.I., Salehi M., Extremely fast decision tree, Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 1953-1962, (2018)