Applications of solar-driven interfacial evaporation-coupled photocatalysis in water treatment: A mini review

被引:2
|
作者
Tian, Shuangchao [1 ]
Zhou, Zhiwei [1 ]
Li, Xing [1 ]
Wang, Fangjun [1 ]
Zhao, Yuantian [1 ]
Tijing, Leonard [2 ,3 ]
Shon, Ho Kyong [2 ,3 ]
Xu, Bentuo [4 ]
Ren, Jiawei [1 ]
机构
[1] Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China
[2] Univ Technol Sydney UTS, Ctr Technol Water & Wastewater, Sch Civil & Environm Engn, City Campus, Broadway, NSW 2007, Australia
[3] Univ Technol Sydney UTS, Sch Civil & Environm Engn, ARC Res Hub Nutrients Circular Econ, City Campus, Broadway, NSW 2007, Australia
[4] Wenzhou Univ, Sch Life & Environm Sci, Wenzhou 325035, Peoples R China
关键词
Solar-driven interfacial evaporation; Interfacial photocatalysis; Seawater desalination; Wastewater treatment; Fuels production; REDUCTION; CO2; STRATEGIES; MECHANISM; OXIDATION; SCHEME;
D O I
10.1016/j.desal.2024.118159
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Solar-driven interfacial evaporation technology (SDIE) was previously proposed to produce freshwater in seawater desalination. With the environmentally-friendly merit of solar energy, researchers tried to apply this technology in other water treatments. However, the components in different water matrices are complex, various contaminants accumulate on the interface reducing evaporation efficiency or evaporating with water vapor affecting the produced water quality. The photocatalysis has good performance on the removal of these pollutants in water. Since both processes require the participation of light, researchers have proposed coupling solardriven interfacial evaporation with photocatalysis to better solve the problem in water treatment. This review summarizes the application of the coupled processes in water treatment. Firstly, the mechanisms of interfacial photothermal conversion and photocatalytic degradation of pollutants are reviewed. Subsequently, the applications of the coupled processes in water production, contaminants removal, and disinfection for water treatment are summarized. The results show that the condensate collected through the coupled process meets drinking water quality standards. Additionally, the coupled process significantly degrades volatile organic compounds (VOCs), non-volatile organic compounds (NVOCs), and disinfects bacteria, thereby preventing surface contamination at the photothermal interface. Furthermore, the application of the coupled processes for green fuel production from water treatment is also discussed. This production process is based on water-catalyzed hydrogen production and carbon dioxide reduction. Finally, current challenges and future perspectives of the coupled processes are examined, aiming to provide theoretical foundations for future research in this field.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Mechanochemical synthesis and interfacial engineering of photothermal polymer composites for solar-driven water evaporation
    Kim, Jihyo
    Lee, Dongjun
    Cho, Wansu
    Yang, Beomjoo
    Jung, Jong Won
    Park, Chiyoung
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2023, 44 (08) : 653 - 657
  • [32] Towards highly efficient solar-driven interfacial evaporation for desalination
    Liu, Xinghang
    Mishra, Debesh Devadutta
    Wang, Xianbao
    Peng, Hongyan
    Hu, Chaoquan
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (35) : 17907 - 17937
  • [33] Solar-driven interfacial evaporation: Research advances in structural design
    Sun, Yuqing
    Tan, Xinyan
    Yuan, Xin
    Li, Jian
    CHEMICAL ENGINEERING JOURNAL, 2024, 495
  • [34] Numerical Simulation Technologies in Solar-Driven Interfacial Evaporation Processes
    Wei, Yumeng
    Yang, Yawei
    Zhao, Qi
    Ma, Yong
    Qiang, Mengyuan
    Fu, Linjing
    Liu, Yihong
    Zhang, Jianfei
    Qu, Zhiguo
    Que, Wenxiu
    SMALL, 2024, 20 (32)
  • [35] Recent research advances in efficient solar-driven interfacial evaporation
    Zhou, Mingyu
    Zhang, Lijing
    Tao, Shengyang
    Li, Renyuan
    Wang, Yuchao
    CHEMICAL ENGINEERING JOURNAL, 2024, 489
  • [36] Solar-driven interfacial evaporation: materials design and device assembly
    Balu, Satheesh kumar
    Cheng, Sijie
    Latthe, Sanjay S.
    Xing, Ruimin
    Liu, Shanhu
    ENERGY MATERIALS, 2024, 4 (02):
  • [37] Solar-driven interfacial evaporation on balsa for shale gas wastewater treatment: Analysis of system efficiency and water safety
    Zhong, Shiyu
    Song, Zhaoyang
    Xie, Wancen
    Guo, Yujie
    Shu, Jingyu
    Li, Xin
    Chen, Guijing
    Ren, Xiaoyu
    Wang, Zicheng
    Hao, Xia
    Liu, Baicang
    CHEMICAL ENGINEERING JOURNAL, 2024, 497
  • [38] Recent advances and challenges for solar-driven water evaporation system toward applications
    Van-Duong Dao
    Ngoc Hung Vu
    Yun, Sining
    NANO ENERGY, 2020, 68
  • [39] Membranes in Solar-Driven Evaporation: Design Principles and Applications
    Yang, Hao-Cheng
    Lu, Feng
    Li, Hao-Nan
    Zhang, Chao
    Darling, Seth B.
    Xu, Zhi-Kang
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (43)
  • [40] Enhanced waste water purification performance of solar-driven interfacial water evaporation through the integration of electrocatalysis
    Xue, Chaorui
    Zhang, Chi
    Zhang, Yu
    Liu, Lei
    Zheng, Wenjing
    Li, Ying
    Zhang, Huinian
    Jia, Suping
    Li, Ning
    Chang, Qing
    Hu, Shengliang
    JOURNAL OF WATER PROCESS ENGINEERING, 2024, 66