Applications of solar-driven interfacial evaporation-coupled photocatalysis in water treatment: A mini review

被引:2
|
作者
Tian, Shuangchao [1 ]
Zhou, Zhiwei [1 ]
Li, Xing [1 ]
Wang, Fangjun [1 ]
Zhao, Yuantian [1 ]
Tijing, Leonard [2 ,3 ]
Shon, Ho Kyong [2 ,3 ]
Xu, Bentuo [4 ]
Ren, Jiawei [1 ]
机构
[1] Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China
[2] Univ Technol Sydney UTS, Ctr Technol Water & Wastewater, Sch Civil & Environm Engn, City Campus, Broadway, NSW 2007, Australia
[3] Univ Technol Sydney UTS, Sch Civil & Environm Engn, ARC Res Hub Nutrients Circular Econ, City Campus, Broadway, NSW 2007, Australia
[4] Wenzhou Univ, Sch Life & Environm Sci, Wenzhou 325035, Peoples R China
关键词
Solar-driven interfacial evaporation; Interfacial photocatalysis; Seawater desalination; Wastewater treatment; Fuels production; REDUCTION; CO2; STRATEGIES; MECHANISM; OXIDATION; SCHEME;
D O I
10.1016/j.desal.2024.118159
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Solar-driven interfacial evaporation technology (SDIE) was previously proposed to produce freshwater in seawater desalination. With the environmentally-friendly merit of solar energy, researchers tried to apply this technology in other water treatments. However, the components in different water matrices are complex, various contaminants accumulate on the interface reducing evaporation efficiency or evaporating with water vapor affecting the produced water quality. The photocatalysis has good performance on the removal of these pollutants in water. Since both processes require the participation of light, researchers have proposed coupling solardriven interfacial evaporation with photocatalysis to better solve the problem in water treatment. This review summarizes the application of the coupled processes in water treatment. Firstly, the mechanisms of interfacial photothermal conversion and photocatalytic degradation of pollutants are reviewed. Subsequently, the applications of the coupled processes in water production, contaminants removal, and disinfection for water treatment are summarized. The results show that the condensate collected through the coupled process meets drinking water quality standards. Additionally, the coupled process significantly degrades volatile organic compounds (VOCs), non-volatile organic compounds (NVOCs), and disinfects bacteria, thereby preventing surface contamination at the photothermal interface. Furthermore, the application of the coupled processes for green fuel production from water treatment is also discussed. This production process is based on water-catalyzed hydrogen production and carbon dioxide reduction. Finally, current challenges and future perspectives of the coupled processes are examined, aiming to provide theoretical foundations for future research in this field.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Photocatalysis assisted solar-driven interfacial water evaporation: principles, advances and trends
    Wang, Dongxue
    Zhang, Xiaotong
    Yang, Chunyu
    Qu, Fengyu
    Huang, Jian
    He, Jingbo
    Yang, Zhuoran
    Guo, Wei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 360
  • [2] Solar-driven interfacial evaporation
    Peng Tao
    George Ni
    Chengyi Song
    Wen Shang
    Jianbo Wu
    Jia Zhu
    Gang Chen
    Tao Deng
    Nature Energy, 2018, 3 : 1031 - 1041
  • [3] Solar-driven interfacial evaporation
    Tao, Peng
    Ni, George
    Song, Chengyi
    Shang, Wen
    Wu, Jianbo
    Zhu, Jia
    Chen, Gang
    Deng, Tao
    NATURE ENERGY, 2018, 3 (12): : 1031 - 1041
  • [4] Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications
    Zhu, Liangliang
    Gao, Minmin
    Peh, Connor Kang Nuo
    Ho, Ghim Wei
    NANO ENERGY, 2019, 57 : 507 - 518
  • [5] Solar-driven interfacial evaporation for water treatment: advanced research progress and challenges
    Li, Jiyan
    Jing, Yanju
    Xing, Guoyu
    Liu, Meichen
    Cui, Yang
    Sun, Hanxue
    Zhu, Zhaoqi
    Liang, Weidong
    Li, An
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (36) : 18470 - 18489
  • [6] Coupling solar-driven interfacial evaporation with forward osmosis for continuous water treatment
    Song, Xiangju
    Dong, Weichao
    Zhang, Yajing
    Abdel-Ghafar, Hamdy Maamoun
    Toghan, Arafat
    Jiang, Heqing
    EXPLORATION, 2022, 2 (04):
  • [7] Advancing Efficiency in Solar-Driven Interfacial Evaporation: Strategies and Applications
    Hou, Lanlan
    Li, Shuai
    Qi, Yingqun
    Liu, Jingchong
    Cui, Zhimin
    Liu, Xiaofei
    Zhang, Ying
    Wang, Nu
    Zhao, Yong
    ACS NANO, 2025, 19 (10) : 9636 - 9683
  • [8] Review of the progress of solar-driven interfacial water evaporation (SIWE) toward a practical approach
    Srishti, Apurba
    Sinhamahapatra, Apurba
    Kumar, Aditya
    ENERGY ADVANCES, 2023, 2 (05): : 574 - 605
  • [9] The highly stable titanium oxide ceramics with solar-driven interfacial evaporation and photocatalysis dualfunction
    Chen, Lei
    Yao, Dongxu
    Zhu, Ming
    Zhao, Jun
    Xia, Yongfeng
    Zeng, Yu-Ping
    CHEMICAL ENGINEERING JOURNAL, 2025, 504
  • [10] Patterned Surfaces for Solar-Driven Interfacial Evaporation
    Luo, Yini
    Fu, Benwei
    Shen, Qingchen
    Hao, Wei
    Xu, Jiale
    Min, Mengdie
    Liu, Yanming
    An, Shun
    Song, Chengyi
    Tao, Peng
    Wu, Jianbo
    Shang, Wen
    Deng, Tao
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (07) : 7584 - 7590