Numerical study on heat transfer and flow characteristics of symmetric Tesla-type microchannel heat sinks

被引:1
|
作者
Xia, Yongqi [1 ,2 ]
Wu, Mingtao [2 ]
Deng, Shibo [2 ]
Yuan, Gaozhan [2 ]
Zhang, Quanli [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Jiangsu Key Lab Precis & Micromfg Technol, Nanjing 210016, Peoples R China
[2] Sichuan Precis & Ultraprecis Machining Engn Techno, Chengdu 610200, Peoples R China
基金
中国国家自然科学基金;
关键词
Tesla-type microchannel; Fluid mixing; Heat transfer enhancement; Numerical simulation; PRESSURE-DROP CHARACTERISTICS; SINGLE-PHASE; FLUID-FLOW; OPTIMIZATION; PERFORMANCE; MANAGEMENT; NETWORK; DESIGN;
D O I
10.1016/j.applthermaleng.2024.124611
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study numerically investigates the thermal performance of multi-stage Tesla valve microchannels (TVM) and a symmetric variant (SYMTVM) using single-phase deionized water, with mass flow rates ranging from 0.5459 to 1.6377 g/s. Both designs, particularly under reverse flow, exhibit lower peak temperatures and reduced temperature gradients compared to forward flow. The SYMTVM, characterized by its increased vortices and bifurcations, periodically disrupts and redevelops the thermal boundary layer, enhancing heat transfer efficiency. The TVM exhibits a significantly higher pressure drop than the SYMTVM across all flow conditions, with the reverse flow in TVM reaching up to 2.48 times that of forward flow and exceeding SYMTVM, especially at a peak flow rate of 1.6377 g/s. The performance evaluation criteria (PEC) and thermal resistance criteria (PECTR) demonstrate the superior performance of SYMTVM, with a reduced connection angle between the trunk and helix regions enhancing thermal efficiency. Furthermore, the SYMTVM-Reverse structure with a 30 degrees interconnection angle demonstrates superior performance compared to the conventional rectangular microchannel (RM), achieving a Nusselt number (Nu) that is five times higher than that of the RM and an overall performance up to 2.59 times greater. These results indicate the SYMTVM-Reverse's high heat transfer efficiency and its capacity to effectively balance thermo-hydraulic performance, even with increased power dissipation.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Flow dynamics and heat transfer in partially porous microchannel heat sinks
    Zargartalebi, Mohammad
    Azaiez, Jalel
    JOURNAL OF FLUID MECHANICS, 2019, 875 : 1035 - 1057
  • [22] Numerical investigation of flow dynamics and heat transfer characteristics in a microchannel heat sink
    Emran, Md.
    Islam, Mohammad Ariful
    10TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING (ICME 2013), 2014, 90 : 563 - 568
  • [23] Numerical Study on Heat Transfer Efficiency and Inter-Layer Stress of Microchannel Heat Sinks with Different Geometries
    Liu, Fangqi
    Jia, Lei
    Zhang, Jiaxin
    Yang, Zhendong
    Wei, Yanni
    Zhang, Nannan
    Lu, Zhenlin
    ENERGIES, 2024, 17 (20)
  • [24] Experimental study of ultralow flow resistance fractal microchannel heat sinks for electronics cooling
    Ji, Xinyu
    Yang, Xiaoping
    Zhang, Yuantong
    Zhang, Yonghai
    Wei, Jinjia
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2022, 179
  • [25] Fluid flow and heat transfer characteristics of microchannel heat sinks with different groove shapes
    Zhu, Qifeng
    Xia, Huixue
    Chen, Junjie
    Zhang, Xinmin
    Chang, Kunpeng
    Zhang, Hongwei
    Wang, Hua
    Wan, Jianfeng
    Jin, Yangyang
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2021, 161
  • [26] Characteristics of heat transfer and fluid flow in microchannel heat sinks with rectangular grooves and different shaped ribs
    Zhu, Qifeng
    Chang, Kunpeng
    Chen, Junjie
    Zhang, Xinmin
    Xia, Huixue
    Zhang, Hongwei
    Wang, Hua
    Li, Haixia
    Jin, Yangyang
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) : 4593 - 4609
  • [27] Heat transfer enhancement in microchannel heat sinks using nanofluids
    Hung, Tu-Chieh
    Yan, Wei-Mon
    Wang, Xiao-Dong
    Chang, Chun-Yen
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (9-10) : 2559 - 2570
  • [28] Numerical study on heat transfer enhancement by viscoelastic fluid pulsating laminar flow in rectangular microchannel heat sinks
    Zhan, Zengkun
    Chen, Lixia
    Zhang, Hongna
    Lin, Chuandong
    Li, Sining
    Li, Xiaobin
    Li, Fengchen
    APPLIED THERMAL ENGINEERING, 2022, 213
  • [29] Numerical study of heat transfer and fluid flow in a symmetric wavy microchannel heat sink reinforced by slanted secondary channels
    Zhu, Qifeng
    Liu, Xianyao
    Zeng, Jingwei
    Zhao, He
    He, Wenqiang
    Deng, Haoxin
    Chen, Guoyan
    CASE STUDIES IN THERMAL ENGINEERING, 2025, 65
  • [30] Optimizing Heat Transfer in Microchannel Heat Sinks: A Numerical Investigation with Nanofluids and Modified Geometries
    Khamesloo, F. Nasiri
    Ganji, D. Domiri
    INTERNATIONAL JOURNAL OF ENGINEERING, 2024, 37 (05): : 860 - 875