Tunable metasurfaces enabled by phase-change materials

被引:0
作者
Hafermann, Martin [1 ]
机构
[1] Institute of Solid-State Physics, Friedrich Schiller University Jena, Jena
关键词
Active amplitude manipulation; Active phase manipulation; Phase-change materials; Tunable metasurfaces;
D O I
10.1016/bs.semsem.2024.08.003
中图分类号
学科分类号
摘要
Recent progress in the miniaturization of optical components was enabled by the emergence of metasurfaces, which allow for manipulation of the amplitude, phase, and polarization of light on length scales smaller than the wavelength. Typically, metasurfaces comprise regularly arranged, subwavelength-sized metallic or dielectric nano-resonators with varying geometry, size, shape, or orientation. Furthermore, they possess effective optical properties resulting from light interaction with the individual nano-antennas leading to unconventional optical responses. Yet, the functionality is limited by the lack of in-operando tunability individual scatterers. Phase-change materials are introduced as active media into metasurfaces to overcome this limitation. The optical and electrical properties of such materials are drastically changed when switching between amorphous and crystalline states. The combination of phase-change materials and metasurfaces allows control over the optical response on demand, which paves the way for dynamically switchable, tunable, and reconfigurable functionalities in active phase-change metasurfaces. © 2024
引用
收藏
页码:1 / 40
页数:39
相关论文
共 50 条
[21]   Influence of Phase-Change Materials and Additional Layer on Performance of Lateral Phase-Change Memories [J].
Yin, You ;
Hosaka, Sumio .
SILICON SCIENCE AND ADVANCED MICRO-DEVICE ENGINEERING II, 2012, 497 :106-110
[22]   Tunable Mid-Infrared Phase-Change Metasurface [J].
Dong, Weiling ;
Qiu, Yimei ;
Zhou, Xilin ;
Banas, Agnieszka ;
Banas, Krzysztof ;
Breese, Mark B. H. ;
Cao, Tun ;
Simpson, Robert E. .
ADVANCED OPTICAL MATERIALS, 2018, 6 (14)
[23]   Modelling the phase-transition in phase-change materials [J].
Kohary, Krisztian ;
Wright, C. David .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2013, 250 (05) :944-948
[24]   Reconfigurable multifunctional metasurfaces employing hybrid phase-change plasmonic architecture [J].
Abdollahramezani, Sajjad ;
Taghinejad, Hossein ;
Fan, Tianren ;
Marzban, Mahmood Reza ;
Eftekhar, Ali A. ;
Adibi, Ali .
NANOPHOTONICS, 2022, 11 (17) :3883-3893
[25]   Switchable image displays in tri-channel phase-change metasurfaces [J].
Wang, Bo ;
Li, Yifan ;
Cui, Yilong ;
Xiang, Chenxuan ;
Guo, Kenan ;
Xiao, Shuyuan ;
Liu, Tingting .
JOURNAL OF OPTICS, 2024, 26 (08)
[26]   Design of Multifunctional Polarization Waveplates Based on Thermal Phase-Change Metasurfaces [J].
Cheng, Bo ;
Zou, Yuxiao ;
Ge, Zihui ;
Lv, Longfeng ;
Liang, Taohua ;
Zhai, Kunpeng ;
Song, Guofeng .
CRYSTALS, 2025, 15 (05)
[27]   Application of phase-change materials in memory taxonomy [J].
Wang, Lei ;
Tu, Liang ;
Wen, Jing .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2017, 18 (01) :406-429
[28]   Effects of phase-change materials on concrete pavements [J].
Sharma, Prashant ;
Sharma, Neha ;
Parashar, Arun Kumar .
MATERIALS TODAY-PROCEEDINGS, 2022, 62 :3978-3982
[29]   A Thermal Accumulator Based on Phase-Change Materials [J].
Bocharov, G. S. ;
Vagin, A. O. ;
Grigoriev, I. S. ;
Dedov, A. V. ;
Eletskii, A. V. ;
Zakharenkov, A. V. ;
Zverev, M. A. .
DOKLADY PHYSICS, 2022, 67 (06) :169-172
[30]   Effect of vacancy disorder in phase-change materials [J].
Song, Young-Sun ;
Jhi, Seung-Hoon .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (17)