Advancing electrochemical water desalination: Machine learning-driven prediction and RSM optimization of activated carbon electrodes

被引:0
|
作者
Hai, Abdul [1 ,2 ]
Patah, Muhamad Fazly Abdul [1 ]
Sabri, Muhammad Ashraf [2 ]
Bharath, G. [3 ]
Banat, Fawzi [2 ]
Daud, Wan Mohd Ashri Wan [1 ]
机构
[1] Univ Malaya, Fac Engn, Ctr Separat Sci & Technol CSST, Dept Chem Engn, Kuala Lumpur 50603, Malaysia
[2] Khalifa Univ Sci & Technol, Dept Chem & Petr Engn, Abu Dhabi 127788, U Arab Emirates
[3] SRM Inst Sci & Technol, Dept Phys & Nanotechnol, Kattankulathur 603203, Tamil Nadu, India
关键词
UNSDG-06; Sustainable electrode synthesis; Palm kernel shell; Carbonization; Electrochemical desalination; Response surface methodology; Machine learning; CAPACITIVE DEIONIZATION; POROUS CARBON; PERFORMANCE;
D O I
10.1016/j.desal.2024.118401
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This study presents an innovative and sustainable approach for synthesizing porous carbon electrodes from palm kernel shells (PKS) using a single-step physicochemical activation process. The study investigates the effect of carbon dioxide and zinc chloride on electrochemical features such as surface morphology and functional chemistry, intrinsic resistance and electrical conductivity. The best electrode developed from palm kernel shell derived activated carbon (PKSAC) using ZnCl2 and N2/CO2 (PKSAC_N2/CO2_ZnCl2) exhibited a superior specific capacitance, electrosorption capacity, and average salt adsorption rate of 365.4 F/g, 22.5 mg/g and 0.372 mg/g/ min under optimized CDI conditions, such as applied voltage, feed flow rate, and initial NaCl concentration of 1.2 V, 7.5 mL/min, and 750 mg/L, respectively. Comparatively, electrodes developed with either N2 activation (PKSAC_N2) or N2/ZnCl2 activation (PKSAC_N2_ZnCl2) demonstrated electrosorption capacities of 12.55 and 19.74 mg/g, respectively. Response surface methodology (RSM) was applied to optimize the CDI parameters for electrochemical water desalination, ensuring process efficiency and scalability. Further, the machine learning extreme gradient boosting (XGB) regressor model predicted the performance of the developed electrodes and aligned well with the experimental data. The article provides key insights into activated carbon synthesis and its role in electrochemical water desalination, offering a sustainable solution to water scarcity that aligns with the UN's sustainability goals.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Machine learning-driven prediction of average localization error in wireless sensor networks
    Lan Zhang
    Yunfeng Zhao
    International Journal of System Assurance Engineering and Management, 2025, 16 (4) : 1468 - 1484
  • [22] Machine learning-driven interfacial characterization and dielectric breakdown prediction in polymer nanocomposites
    Wang, Qi
    He, Wanxin
    Deng, Yuheng
    Zhang, Yue
    Chern, Wen Kwang
    Lv, Zepeng
    Chen, Zhong
    COMPOSITES PART B-ENGINEERING, 2025, 296
  • [23] Machine learning-driven implementation of workflow optimization in cloud computing for IoT applications
    Jamal, Md Khalid
    Faisal, Mohammad
    INTERNET TECHNOLOGY LETTERS, 2025, 8 (03)
  • [24] Machine Learning-Driven Surrogate Modeling for Optimization of Triboelectric Nanogenerator Design Parameters
    Uddin, Mohammad Abrar
    Lim, Myeongju
    Kim, Rubiga
    Burgess, Barrett London
    Roberts, Ken
    Kim, Junghyun
    Kim, Taeil
    ADVANCED ELECTRONIC MATERIALS, 2025,
  • [25] Machine learning-driven optimization of plasma-catalytic dry reforming of methane
    Cai, Yuxiang
    Mei, Danhua
    Chen, Yanzhen
    Bogaerts, Annemie
    Tu, Xin
    JOURNAL OF ENERGY CHEMISTRY, 2024, 96 : 153 - 163
  • [26] Machine learning-driven optimization of Ni-based catalysts for catalytic steam reforming of biomass tar
    Wang, Nantao
    He, Hongyuan
    Wang, Yaolin
    Xu, Bin
    Harding, Jonathan
    Yin, Xiuli
    Tu, Xin
    ENERGY CONVERSION AND MANAGEMENT, 2024, 300
  • [27] Advancing sepsis diagnosis and immunotherapy machine learning-driven identification of stable molecular biomarkers and therapeutic targets
    Xiong, Weichuan
    Zhan, Yian
    Xiao, Rui
    Liu, Fangpeng
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [28] Machine learning-driven prediction of mechanical properties for 3D printed concrete
    Li, Junzan
    Wu, Linhui
    Huang, Zihan
    Xu, Yin
    Liu, Kaihua
    COMPUTERS AND CONCRETE, 2025, 35 (03) : 263 - 279
  • [29] Machine Learning-Driven Improvements in HRV Artifact Correction for Psychosis Prediction in the Schizophrenia Spectrum
    Tsakmaki, Paraskevi, V
    Tasoulis, Sotiris K.
    Georgakopoulos, Spiros, V
    Plagianakos, Vassilis P.
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2024, 2024, 2141 : 544 - 557
  • [30] Machine Learning-Driven Prediction of Composite Materials Properties Based on Experimental Testing Data
    Berladir, Khrystyna
    Antosz, Katarzyna
    Ivanov, Vitalii
    Mitaova, Zuzana
    POLYMERS, 2025, 17 (05)