A new optimal iterative algorithm for solving nonlinear poisson problems in heat diffusion

被引:0
|
作者
机构
[1] Chang, Chih-Wen
[2] Liu, Chein-Shan
来源
Chang, C.-W. (0903040@nchc.narl.org.tw) | 2013年 / Tech Science Press卷 / 34期
关键词
Convergence rates - Convergence speed - Invariant manifolds - Iterative algorithm - Nonlinear algebraic equations - Nonlinear Poisson equations - Numerical experiments - Solution vectors;
D O I
暂无
中图分类号
学科分类号
摘要
The nonlinear Poisson problems in heat diffusion governed by elliptic type partial differential equations are solved by a modified globally optimal iterative algorithm (MGOIA). The MGOIA is a purely iterative method for searching the solution vector x without using the invert of the Jacobian matrix D. Moreover, we reveal the weighting parameter ac in the best descent vector w = αcE + DTE and derive the convergence rate and find a criterion of the parameter γ. When utilizing αc and γ, we can further accelerate the convergence speed several times. Several numerical experiments are carefully discussed and validated the proposed method. © 2013 Tech Science Press.
引用
收藏
相关论文
共 50 条