Size effect of electrocatalyst enabled high-performance lithium-sulfur batteries

被引:1
|
作者
Gao, Lintong [1 ]
Jing, Bo [1 ]
Wang, Xianyou [1 ]
Cao, Qi [1 ]
Ma, Zhongyun [1 ]
机构
[1] Xiangtan Univ, Natl Local Joint Engn Lab Key Mat New Energy Stora, Key Lab Environm Friendly Chem & Applicat, Natl Base Int Sci & Technol Cooperat,Sch Chem,Mini, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-sulfur batteries; Interlayer; Catalytic site; Polysulfides; INTERLAYER;
D O I
10.1016/j.mtchem.2024.102437
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The shuttle effect of polysulfides and the slow redox reaction kinetics are two key challenges that constrain the practical application of lithium-sulfur (Li-S) batteries. Interlayer engineering is considered an effective strategy to address these issues. However, the geometrical design of functionalized interlayers has not been thoroughly analyzed, and few studies have focused on the parameters (e.g., size effect) that influence the electrochemical performance of interlayers. Given the above considerations, we constructed carbon-supported Sb metal particles (SNF1 and SNF2) with size effect as the interlayer of high-performance Li-S batteries by different integration methods, respectively. The experimental results and theoretical calculations demonstrate that variations in the size of nanoparticles result in interlayers with differing abilities to inhibit and convert polysulfides. The small nanoparticles in SNF1 provide abundant catalytic sites for targeting polysulfides. Consequently, the SNF1-based Li-S battery exhibits excellent cycling performance, maintaining stability for up to 500 cycles at a current density of 1.0C, with a capacity decay rate as low as 0.08 %. Notably, the Li-S battery retains a high reversible capacity of 482 mAh g- 1 after 67 cycles at 0.2C, even under a high sulfur load of 8.7 mg cm- 2. This study presents a novel approach to design functionalized interlayers for high-performance Li-S batteries.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Novel gel polymer electrolyte for high-performance lithium-sulfur batteries
    Liu, Ming
    Zhou, Dong
    He, Yan-Bing
    Fu, Yongzhu
    Qin, Xianying
    Miao, Cui
    Du, Hongda
    Li, Baohua
    Yang, Quan-Hong
    Lin, Zhiqun
    Zhao, T. S.
    Kang, Feiyu
    NANO ENERGY, 2016, 22 : 278 - 289
  • [32] Permselective Ionic-Shield for High-Performance Lithium-Sulfur Batteries
    Kim, Soochan
    Yang, Kyeongmin
    Yang, Kaiwei
    De Volder, Michael
    Lee, Youngkwan
    NANO LETTERS, 2023, 23 (22) : 10391 - 10397
  • [33] Phosphorene as a Polysulfide Immobilizer and Catalyst in High-Performance Lithium-Sulfur Batteries
    Li, Lu
    Chen, Long
    Mukherjee, Sankha
    Gao, Jian
    Sun, Hao
    Liu, Zhibo
    Ma, Xiuliang
    Gupta, Tushar
    Singh, Chandra Veer
    Ren, Wencai
    Cheng, Hui-Ming
    Koratkar, Nikhil
    ADVANCED MATERIALS, 2017, 29 (02)
  • [34] Ternary hybrid material structures for high-performance lithium-sulfur batteries
    Wang, Hailiang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [35] Polydopamine-coated separator for high-performance lithium-sulfur batteries
    Zhang, Zhian
    Zhang, Zhiyong
    Li, Jie
    Lai, Yanqing
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (06) : 1709 - 1715
  • [36] Fabrication of a sandwich structured electrode for high-performance lithium-sulfur batteries
    Ding, Bing
    Xu, Guiyin
    Shen, Laifa
    Nie, Ping
    Hu, Pengfei
    Dou, Hui
    Zhang, Xiaogang
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (45) : 14280 - 14285
  • [37] Recent Progress in Framework Materials for High-Performance Lithium-Sulfur Batteries
    Chen, Changyun
    Zhang, Mengfei
    Chen, Quanzhan
    Duan, Haibao
    Liu, Suli
    CHEMICAL RECORD, 2023, 23 (06):
  • [38] Phosphorous Pentasulfide as a Novel Additive for High-Performance Lithium-Sulfur Batteries
    Lin, Zhan
    Liu, Zengcai
    Fu, Wujun
    Dudney, Nancy J.
    Liang, Chengdu
    ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (08) : 1064 - 1069
  • [39] An Ionic Liquid Electrolyte Additive for High-Performance Lithium-Sulfur Batteries
    Guan, Zeliang
    Bai, Ling
    Du, Binyang
    MATERIALS, 2023, 16 (23)
  • [40] Inhibiting shuttle effect of lithium polysulfides by double metal selenides for high-performance lithium-sulfur batteries
    Li, Lei
    Yang, Xue-Jing
    Li, Yi-Yang
    Jin, Bo
    Liu, Hui
    Cui, Meng-Yang
    Guan, Dong-Bo
    Lang, Xing-You
    Jiang, Qing
    RARE METALS, 2024, 43 (06) : 2546 - 2559