Convergence and superconvergence analysis for a mass conservative, energy stable and linearized BDF2 scheme of the Poisson-Nernst-Planck equations

被引:1
作者
Li, Minghao [1 ]
Shi, Dongyang [2 ]
Li, Zhenzhen [3 ]
机构
[1] Henan Univ Technol, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
[3] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2025年 / 140卷
关键词
PNP equations; BDF2 FE scheme; Unconditional optimal error estimates; Superconvergence; FINITE-ELEMENT-METHOD; DRIFT-DIFFUSION; DIFFERENCE SCHEME; TIME BEHAVIOR; APPROXIMATION; SYSTEM; MODEL;
D O I
10.1016/j.cnsns.2024.108351
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a linearized BDF2 finite element scheme for the Poisson-Nernst- Planck (PNP) equations. By employing a novel approach, we rigorously derive unconditional optimal error estimates of the numerical solutions in the l(infinity) (L-2) and l(infinity) (H-1) norms, as well as superconvergent results. The key of the convergence and superconvergence analysis lies in deriving the stability of the finite element solutions in some stronger norms. The advantage of this approach is that there is no need to introduce a corresponding time discrete system, so it is more concise than the error split technique in previous literatures. Finally, we carry out two numerical examples to confirm the theoretical findings.
引用
收藏
页数:19
相关论文
共 74 条
[1]  
Adams R. A., 2003, Pure and Applied Mathematics (Amsterdam)
[2]   STUDY OF A FINITE VOLUME SCHEME FOR THE DRIFT-DIFFUSION SYSTEM. ASYMPTOTIC BEHAVIOR IN THE QUASI-NEUTRAL LIMIT [J].
Bessemoulin-Chatard, M. ;
Chainais-Hillairet, C. ;
Vignal, M. -H. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) :1666-1691
[3]   THE DEBYE SYSTEM - EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS [J].
BILER, P ;
HEBISCH, W ;
NADZIEJA, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (09) :1189-1209
[4]   Long time behavior of solutions to Nernst-Planck and Debye-Huckel drift-diffusion systems [J].
Biler, P ;
Dolbeault, J .
ANNALES HENRI POINCARE, 2000, 1 (03) :461-472
[5]   NEWTON SOLVERS FOR DRIFT-DIFFUSION AND ELECTROKINETIC EQUATIONS [J].
Bousquet, Arthur ;
Hu, Xiaozhe ;
Metti, Maximilian S. ;
Xu, Jinchao .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03) :B982-B1006
[6]   Finite volume approximation for degenerate drift-diffusion system in several space dimensions [J].
Chainais-Hillairet, C ;
Peng, YJ .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (03) :461-481
[7]   A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore [J].
Chaudhry, Jehanzeb Hameed ;
Comer, Jeffrey ;
Aksimentiev, Aleksei ;
Olson, Luke N. .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2014, 15 (01) :93-125
[8]   An HDG Method for the Time-dependent Drift-Diffusion Model of Semiconductor Devices [J].
Chen, Gang ;
Monk, Peter ;
Zhang, Yangwen .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (01) :420-443
[9]   New mixed finite element methods for the coupled Stokes and Poisson-Nernst-Planck equations in Banach spaces [J].
Correa, Claudio I. ;
Gatica, Gabriel N. ;
Ruiz-Baier, Ricardo .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (03) :1511-1551
[10]   Optimal Error Estimates of Coupled and Divergence-Free Virtual Element Methods for the Poisson-Nernst-Planck/Navier-Stokes Equations and Applications in Electrochemical Systems [J].
Dehghan, Mehdi ;
Gharibi, Zeinab ;
Ruiz-Baier, Ricardo .
JOURNAL OF SCIENTIFIC COMPUTING, 2023, 94 (03)