Quasi-interpolating splines: Examples and applications

被引:0
|
作者
Sablonnière, Paul [1 ]
机构
[1] Centre de Mathématiques, INSA de Rennes, 20 avenue des Buttes de Coë,smes, Rennes cédex,35043, France
关键词
58;
D O I
10.1051/proc:072017
中图分类号
学科分类号
摘要
引用
收藏
页码:195 / 207
相关论文
共 50 条
  • [21] Quasi-interpolating spline models for hexagonally-sampled data
    Condat, Laurent
    Van De Ville, Dimitri
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (05) : 1195 - 1206
  • [22] Some performances of local bivariate quadratic C1 quasi-interpolating splines on nonuniform type-2 triangulations
    Dagnino, C
    Lamberti, P
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 173 (01) : 21 - 37
  • [23] On the solution of Fredholm integral equations based on spline quasi-interpolating projectors
    Dagnino, Catterina
    Remogna, Sara
    Sablonniere, Paul
    BIT NUMERICAL MATHEMATICS, 2014, 54 (04) : 979 - 1008
  • [24] On the solution of Fredholm integral equations based on spline quasi-interpolating projectors
    Catterina Dagnino
    Sara Remogna
    Paul Sablonnière
    BIT Numerical Mathematics, 2014, 54 : 979 - 1008
  • [25] Interpolating splines on graphs for data science applications
    Ward, John Paul
    Narcowich, Francis J.
    Ward, Joseph D.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 49 (02) : 540 - 557
  • [26] A Geometric Algorithm for Ray/Bezier Surfaces Intersection using Quasi-interpolating Control Net
    Fougerolle, Yohan D.
    Lanquetin, Sandrine
    Neveu, Marc
    Lauthelier, Thierry
    SITIS 2008: 4TH INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGY AND INTERNET BASED SYSTEMS, PROCEEDINGS, 2008, : 451 - +
  • [27] ON CONVERGENCE AND QUASI-REGULARITY OF INTERPOLATING COMPLEX PLANAR SPLINES
    OPFER, G
    SCHOBER, G
    MATHEMATISCHE ZEITSCHRIFT, 1982, 180 (04) : 469 - 481
  • [28] Superconvergent methods based on quasi-interpolating operators for fredholm integral equations of the second kind.
    Allouch, C.
    Remogna, S.
    Sbibih, D.
    Tahrichi, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 404
  • [29] Geodesic interpolating splines
    Camion, V
    Younes, L
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, 2001, 2134 : 513 - 527
  • [30] ON MIXED INTERPOLATING SPLINES
    HUANG, DR
    SHA, Z
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1982, 3 (02): : 233 - 240