Quasi-interpolating splines: Examples and applications

被引:0
|
作者
Sablonnière, Paul [1 ]
机构
[1] Centre de Mathématiques, INSA de Rennes, 20 avenue des Buttes de Coë,smes, Rennes cédex,35043, France
关键词
58;
D O I
10.1051/proc:072017
中图分类号
学科分类号
摘要
引用
收藏
页码:195 / 207
相关论文
共 50 条
  • [1] Bivariate quasi-interpolating splines with applications in numerical integration
    Dagnino C.
    Rendiconti del Seminario Matematico e Fisico di Milano, 1998, 68 (1): : 231 - 241
  • [2] Adaptive quasi-interpolating quartic splines
    Martin Hering-Bertram
    Gerd Reis
    Frank Zeilfelder
    Computing, 2009, 86 : 89 - 100
  • [3] Adaptive quasi-interpolating quartic splines
    Hering-Bertram, Martin
    Reis, Gerd
    Zeilfelder, Frank
    COMPUTING, 2009, 86 (2-3) : 89 - 100
  • [4] NUMERICAL-INTEGRATION BASED ON QUASI-INTERPOLATING SPLINES
    DAGNINO, C
    DEMICHELIS, V
    SANTI, E
    COMPUTING, 1993, 50 (02) : 149 - 163
  • [5] Shape-preserving quasi-interpolating univariate cubic splines
    Conti, C
    Morandi, R
    Rabut, C
    MATHEMATICAL METHODS FOR CURVES AND SURFACES II, 1998, : 55 - 62
  • [6] Quasi-interpolating operators and their applications in hypersingular integrals
    Wong, RH
    Lu, Y
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1998, 16 (04) : 337 - 344
  • [7] QUASI-INTERPOLATING OPERATORS AND THEIR APPLICATIONS IN HYPERSINGULAR INTEGRALS
    Ren-hong Wang and You Lu(Institute of Mathematical Science Dalian University of Technology Dalian
    JournalofComputationalMathematics, 1998, (04) : 337 - 344
  • [8] ON THE UNIFORM-CONVERGENCE OF CAUCHY PRINCIPAL VALUES OF QUASI-INTERPOLATING SPLINES
    RABINOWITZ, P
    SANTI, E
    BIT, 1995, 35 (02): : 277 - 290
  • [9] On the evaluation of Cauchy principal value integrals by rules based on quasi-interpolating splines
    Santi, E
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 71 (01) : 1 - 14
  • [10] A class of C2 quasi-interpolating splines free of Gibbs phenomenon
    Sergio Amat
    David Levin
    Juan Ruiz-Álvarez
    Juan C. Trillo
    Dionisio F. Yáñez
    Numerical Algorithms, 2022, 91 : 51 - 79