Modeling Fibrous Tissue in Vascular Fluid-Structure Interaction: A Morphology-Based Pipeline and Biomechanical Significance

被引:2
作者
Sun, Yujie [1 ]
Huang, Jiayi [1 ]
Lu, Qingshuang [1 ]
Yue, Xinhai [1 ]
Huang, Xuanming [1 ]
He, Wei [2 ]
Shi, Yun [2 ]
Liu, Ju [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen, Guangdong, Peoples R China
[2] Fudan Univ, Zhongshan Hosp, Inst Vasc Surg, Dept Vasc Surg, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
anisotropic material model; fluid-structure interaction; image-based modeling; patient-specific simulation; vascular biomechanics; BLOOD-FLOW; MECHANICAL-PROPERTIES; MESH GENERATION; ARTERIAL-WALL; FRAMEWORK; CORONARY; FSI; RECONSTRUCTION; SIMULATIONS; FORMULATION;
D O I
10.1002/cnm.3892
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Modeling fibrous tissue for vascular fluid-structure interaction analysis poses significant challenges due to the lack of effective tools for preparing simulation data from medical images. This limitation hinders the physiologically realistic modeling of vasculature and its use in clinical settings. Leveraging an established lumen modeling strategy, we propose a comprehensive pipeline for generating thick-walled artery models. A specialized mesh generation procedure is developed to ensure mesh continuity across the lumen and wall interface. Exploiting the centerline information, a series of procedures are introduced for generating local basis vectors within the arterial wall. The procedures are tailored to handle thick-walled tissues where basis vectors may exhibit transmural variations. Additionally, we propose methods for accurately identifying the centerline in multi-branched vessels and bifurcating regions. These modeling approaches are algorithmically implementable, rendering them readily integrable into mainstream cardiovascular modeling software. The developed fiber generation method is evaluated against the strategy using linear elastostatics analysis, demonstrating that the proposed approach yields satisfactory fiber definitions in the considered benchmark. Finally, we examine the impact of anisotropic arterial wall models on the vascular fluid-structure interaction analysis through numerical examples, employing the neo-Hookean model for comparative purposes. The first case involves an idealized curved geometry, while the second studies an image-based abdominal aorta model. Our numerical results reveal that the deformation and stress distribution are critically related to the constitutive model of the wall, whereas hemodynamic factors are less sensitive to the wall model. This work paves the way for more accurate image-based vascular modeling and enhances the prediction of arterial behavior under physiologically realistic conditions.
引用
收藏
页数:24
相关论文
共 84 条
[1]   Numerical framework for patient-specific computational modelling of vascular tissue [J].
Alastrue, V. ;
Garcia, A. ;
Pena, E. ;
Rodriguez, J. F. ;
Martinez, M. A. ;
Doblare, M. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2010, 26 (01) :35-51
[2]  
[Anonymous], VASCULAR MODELING TO
[3]  
[Anonymous], MEDVISO Segment,
[4]  
[Anonymous], Open CASCADE Online Documentation,
[5]   On the Overestimation of Early Wall Thickening at the Carotid Bulb by Black Blood MRI, With Implications for Coronary and Vulnerable Plaque Imaging [J].
Antiga, L. ;
Wasserman, B. A. ;
Steinman, D. A. .
MAGNETIC RESONANCE IN MEDICINE, 2008, 60 (05) :1020-1028
[6]   An image-based modeling framework for patient-specific computational hemodynamics [J].
Antiga, Luca ;
Piccinelli, Marina ;
Botti, Lorenzo ;
Ene-Iordache, Bogdan ;
Remuzzi, Andrea ;
Steinman, David A. .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2008, 46 (11) :1097-1112
[7]   CRIMSON: An open-source software framework for cardiovascular integrated modelling and simulation [J].
Arthurs, Christopher J. ;
Khlebnikov, Rostislav ;
Melville, Alex ;
Marcan, Marija ;
Gomez, Alberto ;
Dillon-Murphy, Desmond ;
Cuomo, Federica ;
Silva Vieira, Miguel ;
Schollenberger, Jonas ;
Lynch, Sabrina R. ;
Tossas-Betancourt, Christopher ;
Iyer, Kritika ;
Hopper, Sara ;
Livingston, Elizabeth ;
Youssefi, Pouya ;
Noorani, Alia ;
Ben Ahmed, Sabrina ;
Nauta, Foeke J. H. ;
van Bakel, Theodorus M. J. ;
Ahmed, Yunus ;
van Bakel, Petrus A. J. ;
Mynard, Jonathan ;
Di Achille, Paolo ;
Gharahi, Hamid ;
Lau, Kevin D. ;
Filonova, Vasilina ;
Aguirre, Miquel ;
Nama, Nitesh ;
Xiao, Nan ;
Baek, Seungik ;
Garikipati, Krishna ;
Sahni, Onkar ;
Nordsletten, David ;
Figueroa, C. Alberto .
PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (05)
[8]   Fluid-structure interaction simulations of patient-specific aortic dissection [J].
Baeumler, Kathrin ;
Vedula, Vijay ;
Sailer, Anna M. ;
Seo, Jongmin ;
Chiu, Peter ;
Mistelbauer, Gabriel ;
Chan, Frandics P. ;
Fischbein, Michael P. ;
Marsden, Alison L. ;
Fleischmann, Dominik .
BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2020, 19 (05) :1607-1628
[9]   Comparison of arterial wall models in fluid-structure interaction simulations [J].
Balzani, D. ;
Heinlein, A. ;
Klawonn, A. ;
Rheinbach, O. ;
Schroeder, J. .
COMPUTATIONAL MECHANICS, 2023, 72 (05) :949-965
[10]   A polyconvex framework for soft biological tissues.: Adjustment to experimental data [J].
Balzani, D. ;
Neff, P. ;
Schroeder, J. ;
Holzapfel, G. A. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2006, 43 (20) :6052-6070